Examination 2

Instructions Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

1. Let γ denote the boundary of the square with vertices $(0,0),(1,0),(1,1)$, and $(0,1)$, oriented counterclockwise as usual. (See the figure.)

Determine the value of the line integral $\int_{\gamma} \operatorname{Re}(z) d z$.
2. Suppose $v(x, y)=x^{3}-3 x y^{2}-4 y$. Determine a function $u(x, y)$ such that $u+i v$ is an analytic function.
3. Let γ denote a simple closed curve, oriented counterclockwise, and suppose $f(z)=\frac{z}{z^{2}-1}$. What are the possible values of the integral $\int_{\gamma} f(z) d z$ for different choices of the curve γ ?
4. If n is a natural number, and

$$
\int_{|z|=1} \frac{\cos (z)}{z^{n}} d z=0
$$

then what can you deduce about the number n ?
5. Determine the radius of convergence of the power series $\sum_{n=1}^{\infty}\left(\frac{\cos (\text { in })}{2^{n}+3^{n}}\right) z^{n}$.
6. Give an example of a function $f(z)$ whose Taylor series $\sum_{n=0}^{\infty} \frac{f^{(n)}(4)}{n!}(z-4)^{n}$ with center at the point 4 has radius of convergence equal to 2 .

Extra Credit

Lee and Orville conjecture that if f is an entire function such that $|f(z)| \leq \sqrt{|z|}$ for every z, then f must be a constant function.

Lee says, "The only plausible candidate for $f(z)$ is $z^{1 / 2}$, but this function is not entire: the derivative does not exist when $z=0$. So I think that the conjecture must be true."

Orville says, "Certainly f cannot be a nonconstant polynomial, for then $|f(z)|$ would grow more or less like $|z|^{n}$ for some positive integer n, which is faster growth than $|z|^{1 / 2}$. But I am not sure about general entire functions, that is, power series with infinite radius of convergence."

What do you think? Can you prove Lee-Orville's theorem, or can you find a counterexample?

