Final Examination

Instructions Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

1. Prove that if z is a complex number, then $|z|=1$ if and only if $|2 z-1|=|2-z|$.
2. Suppose a and b are real numbers, and

$$
f(x+i y)=-3 x^{2} y+a y^{3}+2 x^{2}+b y^{2}+i v(x, y)
$$

for some real-valued function $v(x, y)$. Determine the values that a and b must have in order for f to be an analytic function.
3. Give precise statements of $t w o$ of the following four items.

- Cauchy-Riemann equations
- Green's theorem
- Cauchy's theorem
- Liouville's theorem

4. Give a concrete example of a power series $\sum_{n=1}^{\infty} a_{n} z^{n}$ for which the radius of convergence is equal to 4 .
5. Suppose the rational function

$$
\frac{z}{(z-1)(z-2)}
$$

is expanded in a Laurent series in powers of z and z^{-1} that converges when $1<|z|<2$. Determine the coefficient of z^{407} in the series.
6. Evaluate the integral

$$
\int_{|z-1|=2} \frac{z}{\left(z^{2}-4\right) \sin (z)} d z
$$

where the integration path is a circle with center 1 and radius 2 , oriented counterclockwise (as usual).

Extra Credit

Find a conformal mapping that maps $\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$ (the right-hand half-plane) onto $\{z \in \mathbb{C}:|z|<1\}$ (the unit disk) and takes the point 1 to the point 0 .

