Quiz

1. Evaluate $\int_{C_{R}} \frac{e^{i z}}{\left(z^{2}+1\right)^{2}} d z$ by using the residue theorem (notice the double pole at i). Deduce that

$$
\int_{0}^{\infty} \frac{\cos (x)}{\left(x^{2}+1\right)^{2}} d x=\frac{\pi}{2 e}
$$

Solution. Here is a computation of the residue of the integrand at i :

$$
\left.\frac{d}{d z}\left(\frac{e^{i z}}{(z+i)^{2}}\right)\right|_{z=i}=\left.\left(\frac{i e^{i z}}{(z+i)^{2}}-\frac{2 e^{i z}}{(z+i)^{3}}\right)\right|_{z=i}=\frac{e^{-1}}{(2 i)^{2}}\left(i-\frac{2}{2 i}\right)=\frac{1}{2 i e}
$$

As long as $R>1$, so that the singular point i is inside the curve, the value of the integral is $2 \pi i$ times the residue, or π / e.
Next observe that if $z=x+i y$ and $y \geq 0$, then $\left|e^{i z}\right|=\left|e^{i x-y}\right|=\left|e^{i x} e^{-y}\right|=e^{-y} \leq 1$. Accordingly, when z lies on the semicircular part of the curve, and $R>1$, the absolute value of the integrand is bounded above by $1 /\left(R^{2}-1\right)^{2}$. The length of the semicircle is πR, so the integral over the semicircle has absolute value bounded above by $\pi R /\left(R^{2}-1\right)^{2}$, a quantity that evidently tends to 0 when R tends to infinity.
The upshot is that

$$
\frac{\pi}{e}=\int_{-\infty}^{\infty} \frac{e^{i x}}{\left(x^{2}+1\right)^{2}} d x=\int_{0}^{\infty} \frac{e^{i x}+e^{-i x}}{\left(x^{2}+1\right)^{2}} d x=\int_{0}^{\infty} \frac{2 \cos (x)}{\left(x^{2}+1\right)^{2}} d x
$$

Dividing by 2 produces the required result.
2. Show that $\lim _{N \rightarrow \infty} \int_{C_{N}} \frac{\pi}{z^{2} \sin (\pi z)} d z=0$ (where N runs through the natural numbers). Then evaluate the integral by using the residue theorem. Deduce that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

Solution. Observe that

$$
\begin{equation*}
|\sin (\pi z)|=\left|\frac{e^{i \pi x} e^{-\pi y}-e^{-i \pi x} e^{\pi y}}{2 i}\right|=\frac{1}{2}\left|e^{\pi y}-e^{2 \pi i x} e^{-\pi y}\right| . \tag{*}
\end{equation*}
$$

When z lies on either of the two vertical edges of the square, where $x= \pm\left(N+\frac{1}{2}\right)$, the value of $e^{2 \pi i x}$ is -1 , so $|\sin (\pi z)|$ reduces to $\cosh (\pi y)$. The Maclaurin series of $\cosh (u)$ is
$1+\frac{1}{2!} u^{2}+\frac{1}{4!} u^{4}+\cdots$ with positive coefficients and only even powers, so $\cosh (u) \geq 1$ for every value of u. Thus $1 /|\sin (\pi z)| \leq 1$ on the vertical edges of the square. Moreover, applying the triangle inequality to $\left(^{*}\right)$ shows that $|\sin (\pi z)| \geq \frac{1}{2}\left|e^{\pi y}-e^{-\pi y}\right|=|\sinh (\pi y)|$. The Maclaurin series for $\sinh (u)$ is $u+\frac{1}{3!} u^{3}+\cdots$ with all plus signs, so $|\sinh (u)| \geq|u|$ for every value of u. Consequently, if z lies on either of the horizontal edges of the square, then $|\sin (\pi z)| \geq \pi\left(N+\frac{1}{2}\right)>1$, so again $1 /|\sin (\pi z)| \leq 1$.
The circle of radius N centered at 0 is inside the square, so $\left|z^{2}\right|>N^{2}$ when z lies on C_{N}. Therefore the absolute value of the integral over C_{N} is no greater than the product of the upper bound π / N^{2} for the integrand times the length $4(2 N+1)$ of the path. Evidently $4(2 N+1) \pi / N^{2} \rightarrow 0$ when $N \rightarrow \infty$, so the integral over C_{N} tends to 0 when N tends to infinity.
There are simple poles inside C_{N} when z is $\pm 1, \pm 2, \ldots, \pm N$, and there is a triple pole when $z=0$. The residue at $\pm n$ when $n \neq 0$ is

$$
\left.\frac{\pi / z^{2}}{\frac{d}{d z} \sin (\pi z)}\right|_{z= \pm n}, \quad \text { or } \quad \frac{\pi / n^{2}}{\pi \cos (\pi n)}, \quad \text { or } \quad \frac{(-1)^{n}}{n^{2}}
$$

One way to compute the residue at 0 is to expand the integrand in a series as follows:

$$
\frac{\pi}{z^{2} \sin (\pi z)}=\frac{\pi}{z^{2}\left(\pi z-\frac{1}{3!} \pi^{3} z^{3}+\cdots\right)}=\frac{1}{z^{3}\left(1-\frac{1}{3!} \pi^{2} z^{2}+\cdots\right)}=\frac{1}{z^{3}}\left(1+\frac{1}{3!} \pi^{2} z^{2}+\cdots\right)
$$

the last step following by the geometric-series trick. Therefore the residue at 0 , which is the coefficient of $1 / z$ in the Laurent series, equals $\pi^{2} / 6$.
Putting all the parts together by the residue theorem shows that

$$
0=\lim _{N \rightarrow \infty} \int_{C_{N}}=2 \pi i \lim _{N \rightarrow \infty}\left(\frac{\pi^{2}}{6}+2 \sum_{n=1}^{N} \frac{(-1)^{n}}{n^{2}}\right), \quad \text { or } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

