Quiz

1. Find real numbers a and b satisfying the property that $(a+b i)^{2}=i$.

Solution. Expanding the left-hand side shows that $a^{2}+2 a b i-b^{2}=i$. Therefore

$$
\begin{aligned}
a^{2}-b^{2} & =0, \quad \text { and } \\
2 a b & =1 .
\end{aligned}
$$

The first equation implies that $a= \pm b$. If a were equal to $-b$, then the second equation would imply that $-2 b^{2}=1$, which is impossible, since $-2 b^{2} \leq 0$. Therefore a must be equal to b.
The second equation now implies that $2 b^{2}=1$, so $b= \pm 1 / \sqrt{2}$. Thus the problem has two solutions: either $a=b=1 / \sqrt{2}$ or $a=b=-1 / \sqrt{2}$.
An alternative method is to express the complex number i as $e^{i \pi / 2}$. Since $a+b i$ represents \sqrt{i}, or $i^{1 / 2}$, one solution for $a+b i$ is $e^{i \pi / 4}$. This complex number can be rewritten as $\cos (\pi / 4)+i \sin (\pi / 4)$, or as $\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}$. (The other solution for $a+b i$ is the negative of this answer.)
2. Sketch a picture representing the set of values of the complex variable z for which $|z-i| \leq 1$.

Solution. The absolute value of a difference represents the distance between two complex numbers, so the distance between z and i is no greater than 1 . In other words, the allowed values of z fill up a disk of radius 1 centered at i, as illustrated in the diagram. The boundary circle is included in the set.

3. If z is an element of the complex numbers satisfying the property that $|\operatorname{Re}(z)|=|z|$, then what can you deduce about z ?

Solution. The equation implies that the complex number z must actually be a real number. Indeed, if $\operatorname{Im} z$ were not 0 , then $(\operatorname{Im} z)^{2}$ would be strictly positive, whence

$$
|z|=\sqrt{(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}}>\sqrt{(\operatorname{Re} z)^{2}}=|\operatorname{Re} z|
$$

and the hypothesis that $|\operatorname{Re} z|=|z|$ would be violated. Thus $\operatorname{Im} z$ must be equal to 0 .
The geometric picture is that $|z|$ represents the distance from z to 0 , and $|\operatorname{Re} z|$ represents the distance from z to the imaginary axis. By the triangle inequality, these two distances cannot be equal unless z lies on the real axis.

