Solution. Expanding the left-hand side shows that $a^2 + 2abi - b^2 = i$. Therefore

$$a^2 - b^2 = 0, \qquad \text{and} \\ 2ab = 1.$$

The first equation implies that $a = \pm b$. If a were equal to -b, then the second equation would imply that $-2b^2 = 1$, which is impossible, since $-2b^2 \le 0$. Therefore a must be equal to b.

The second equation now implies that $2b^2 = 1$, so $b = \pm 1/\sqrt{2}$. Thus the problem has two solutions: either $a = b = 1/\sqrt{2}$ or $a = b = -1/\sqrt{2}$.

An alternative method is to express the complex number *i* as $e^{i\pi/2}$. Since a + bi represents \sqrt{i} , or $i^{1/2}$, one solution for a + bi is $e^{i\pi/4}$. This complex number can be rewritten as $\cos(\pi/4) + i\sin(\pi/4)$, or as $\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$. (The other solution for a + bi is the negative of this answer.)

2. Sketch a picture representing the set of values of the complex variable z for which $|z-i| \le 1$.

Solution. The absolute value of a difference represents the distance between two complex numbers, so the distance between z and i is no greater than 1. In other words, the allowed values of z fill up a disk of radius 1 centered at i, as illustrated in the diagram. The boundary circle is included in the set.

3. If z is an element of the complex numbers satisfying the property that $|\operatorname{Re}(z)| = |z|$, then what can you deduce about z?

Solution. The equation implies that the complex number *z* must actually be a real number. Indeed, if Im *z* were not 0, then $(\text{Im } z)^2$ would be strictly positive, whence

$$|z| = \sqrt{(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2} > \sqrt{(\operatorname{Re} z)^2} = |\operatorname{Re} z|,$$

and the hypothesis that $|\operatorname{Re} z| = |z|$ would be violated. Thus $\operatorname{Im} z$ must be equal to 0.

The geometric picture is that |z| represents the distance from z to 0, and $|\operatorname{Re} z|$ represents the distance from z to the imaginary axis. By the triangle inequality, these two distances cannot be equal unless z lies on the real axis.