- 1. Define each of the following terms.
 - (a) proof by mathematical induction
 - (b) Cauchy sequence of real numbers
 - (c) differentiable function
 - (d) divergent infinite series
- 2. State the following theorems.
 - (a) the Bolzano-Weierstrass theorem
 - (b) Taylor's theorem
 - (c) the Weierstrass M-test
- 3. Give an example of each of the following.
 - (a) a bounded uncountable set
 - (b) a sequence $\{a_n\}_{n=1}^{\infty}$ such that $\limsup_{n \to \infty} a_n = 5$ and $\liminf_{n \to \infty} a_n = 3$
 - (c) a Riemann integrable function f and a partition of an interval such that the lower sum of f for that partition equals 4
 - (d) a power series $\sum_{n=1}^{\infty} a_n x^n$ whose radius of convergence equals 9
- 4. Prove one of the following two theorems.
 - (a) A continuous function on a closed, finite interval [a, b] is Riemann integrable.
 - (b) The uniform limit of continuous functions is continuous. More precisely, if $\{f_n\}_{n=1}^{\infty}$ is a sequence of continuous functions on a set E contained in \mathbb{R} , and if $f_n \to f$ uniformly on E as $n \to \infty$, then f is continuous on E.

5. Consider the function f defined on the domain \mathbb{R} as follows:

$$f(x) = \begin{cases} \left(\frac{\sin(x)}{x}\right)^2, & \text{if } x \neq 0; \\ 1, & \text{if } x = 0. \end{cases}$$

For each of the following properties, state whether or not this function f has the property, and explain why.

- (a) continuous on \mathbb{R}
- (b) uniformly continuous on \mathbb{R}
- (c) differentiable on \mathbb{R}
- (d) Riemann integrable on ℝ(in the sense of improper Riemann integrals)

- 6. Solve one of the following two problems.
 - (a) Prove that the inequality

$$2\ln(x) < x - \frac{1}{x}$$

holds when x > 1. (Here $\ln(x)$ is the natural logarithm function, which may be defined by $\ln(x) = \int_1^x t^{-1} dt$.)

(b) Consider the sequence $\{a_n\}_{n=1}^{\infty}$ defined by $a_1 = 2, a_2 = \sqrt{6+2}, a_3 = \sqrt{6+\sqrt{6+2}}, a_1$ in general, $a_{n+1} = \sqrt{6+a_n}$ when $n \ge 1$. Prove that the limit $\lim_{n \to \infty} a_n$ exists.