1. For the three definitions, see pages 73,85 , and 89 .
2. See Theorem 4.2.3 on page 130 and Theorem 4.3.1 on page 136 .
3. In view of the definition on page 121, we may write

$$
\begin{aligned}
(f g)^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h} \cdot g(x+h)+\frac{g(x+h)-g(x)}{h} \cdot f(x)\right) \\
& =f^{\prime}(x) g(x)+g^{\prime}(x) f(x) .
\end{aligned}
$$

We did this calculation in class. The last step uses that the limit of a product equals the product of the limits.
4. Rewriting $\sum_{j=0}^{n-1} \frac{2 n}{n^{2}+j^{2}}$ as $\sum_{j=0}^{n-1} \frac{1}{n} \cdot \frac{2}{1+\left(\frac{j}{n}\right)^{2}}$ makes it possible to recognize this sum as an upper sum for the function $\frac{2}{1+x^{2}}$ on the interval $[0,1]$ with the partition $0,1 / n, 2 / n, \ldots, n / n$. Since the function is decreasing, the upper sum is identical to the left-hand-endpoint sum.
5. There are many possible examples. Example 1 on page 103 solves part (b), Example 1 on page 113 solves part (c), and one solution for part (a) is a step function like $f(x)= \begin{cases}0, & 0 \leq x \leq \frac{1}{2} \\ 1, & \frac{1}{2}<x \leq 1 .\end{cases}$
6. Parts (a) and (b) are Theorems 4.2.4/4.2.5 on pages 131-132 and Theorem 4.1.3 on page 125. For part (c), view F as $G \circ g$, where $G(u)=\int_{0}^{u} e^{t^{2}} d t$ and $g(x)=1 / x$. Then $F^{\prime}(x)=G^{\prime}(g(x)) g^{\prime}(x)$ by the chain rule, while $G^{\prime}(u)=e^{u^{2}}$ by the fundamental theorem of calculus, and $g^{\prime}(x)=-1 / x^{2}$. Hence

$$
F^{\prime}(x)=-\frac{1}{x^{2}} \exp \left(\frac{1}{x^{2}}\right) .
$$

