Math 409-502

Harold P. Boas
boas@tamu.edu

Results of the third examination

Good job!
Here are the scores:

95	94	94	92	92	91	90	90	89	88	88
85	85	80	79	78	78	77	76	75	66	34

Reminder: the comprehensive final examination will be held in this room on Tuesday, December 14, from 8:00-10:00 AM.

Things can go wrong in the limit

Continuity. On the interval $[0,1]$, let $f_{n}(x)=x^{1 / n}$.
Then $\lim _{n \rightarrow \infty} f_{n}(x)= \begin{cases}1, & \text { if } x \neq 0, \\ 0, & \text { if } x=0,\end{cases}$
so the limit of these continuous functions is discontinuous.
Derivatives. Let $g_{n}(x)=\frac{1}{n} x^{n}$. Then $\left(\lim _{n \rightarrow \infty} g_{n}(x)\right)^{\prime}=0$ when $0 \leq x \leq 1$, but $\lim _{n \rightarrow \infty} g_{n}^{\prime}(x)=$ $\lim _{n \rightarrow \infty} x^{n-1}= \begin{cases}0, & \text { if } x \neq 1, \\ 1, & \text { if } x=1 .\end{cases}$
Here (derivative of the limit) \neq (limit of the derivatives).
Integrals. Let $h_{n}(x)= \begin{cases}2^{n+1}, & \text { if } \frac{1}{2^{n+1}} \leq x \leq \frac{1}{2^{n}}, \\ 0, & \text { otherwise. }\end{cases}$
Then $\int_{0}^{1} \lim _{n \rightarrow \infty} h_{n}(x) d x=0$, but $\lim _{n \rightarrow \infty} \int_{0}^{1} h_{n}(x) d x=1$.
Here (integral of the limit) \neq (limit of the integrals).

Uniform convergence

A sequence of functions $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges uniformly on an interval to a function f if for every $\epsilon>0$ there is an N such that $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all x whenever $n>N$.
"Uniform" means that N can be chosen to be independent of x.
Example. Let $f_{n}(x)=\sin \left(x+\frac{1}{n}\right)$. Then the sequence of functions $f_{n}(x)$ converges uniformly to the function $f(x)=\sin (x)$ on the unbounded interval $(-\infty, \infty)$.

For suppose $\epsilon>0$ is given. By the mean-value theorem, $\sin \left(x+\frac{1}{n}\right)-\sin (x)=\frac{1}{n} \cos (c)$ for some c depending on x, so $\left|f_{n}(x)-f(x)\right| \leq \frac{1}{n}$. Therefore $\left|f_{n}(x)-f(x)\right|<\epsilon$ when $n>1 / \epsilon$. So we can take $N=1 / \epsilon$, which is independent of x.

Theorems about uniform convergence

1. If a sequence of continuous functions f_{n} converges uniformly on an interval to a function f, then the limit function f is continuous.
2. If a sequence of differentiable functions f_{n} converges (uniformly) on an interval to a function f, and if the sequence of derivatives f_{n}^{\prime} converges uniformly to a function g, then the limit function f is differentiable, and $f^{\prime}=g$.
3. If a sequence of integrable functions f_{n} converges uniformly on an interval $[a, b]$ to a function f, then f is integrable and $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x$.
(This is a stronger theorem than the one in the book.)
In all three cases, the word "sequence" can be replaced by the word "series" (because convergence of a series means convergence of the sequence of partial sums).

Homework

Read sections 22.1-22.5, pages 305-318.

