Math 409-502

Harold P. Boas
boas@tamu.edu

Final examination

The comprehensive final examination will be held in this room on Tuesday, December 14, from 8:00-10:00 AM.

The major topics we covered this semester are:

- limits
- sequences and series
- continuous functions
- differentiable functions
- integrable functions

We covered chapters $1-15,17-18$, the first half of 19-20, and (briefly) 22.1-22.5.

Pointwise versus uniform convergence

Example. For $x>0$, let $f_{n}(x)=e^{-n x}$. Then $f_{n}(x)$ converges to 0 pointwise since for each $x>0$, we have $\lim _{n \rightarrow \infty} e^{-n x}=0$.

The convergence is not uniform because sup $e^{-n x}=1$ for every n. If $\epsilon=1 / 2$, the definition of uniform convergence cannot be satisfied.

Example: Fourier series

The function $|x|$ cannot be expanded in a Maclaurin series because the function is not differentiable at 0 .
The function $|x|$ can, however, be expanded in a series of trigonometric functions: namely (see Example 22.4, p. 315), $|x|=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n \text { odd }} \frac{\cos (n x)}{n^{2}}$, when $-\pi \leq x \leq \pi$.

The series converges uniformly because the tail of the series is less than the tail of the convergent series $\sum 1 / n^{2}$.
This is an example of the Weierstrass M-test for uniform convergence of series.
The series represents a continuous function on $(-\infty, \infty)$: the periodic extension of $|x|$ from $[-\pi, \pi]$ to $(-\infty, \infty)$.
The series can be integrated term-by-term.
The series cannot be differentiated term-by-term because the series of derivatives does not converge uniformly.

Example: a nowhere differentiable function

Let $A(x)$ denote the periodic extension of $|x|$ just discussed.
Set $f(x)=\sum_{n=0}^{\infty} \frac{A\left(2^{n} x\right)}{2^{n}}$.
The series converges uniformly by the Weierstrass M-test, so f is a continuous function.
But there is no point at which f has a derivative.
Roughly speaking, the graph of f has corners in every interval.

