Final Examination

- 1. State the following three theorems.
 - (a) the Bolzano-Weierstrass theorem (about sequences)
 - (b) the intermediate value theorem (about continuous functions)
 - (c) the mean-value theorem (about differentiable functions)
- 2. Define the following three notions.
 - (a) compact interval
 - (b) Cauchy sequence
 - (c) Riemann sum
- 3. (a) State the definition of "the sequence $\{a_n\}_{n=1}^{\infty}$ converges to the limit L" in the form "for every $\epsilon > 0 \dots$ ".

(b) Prove from the definition that the sequence $\left\{\frac{1}{2^n}\right\}_{n=1}^{\infty}$ converges to the limit 0.

4. (a) State the definition of "the series $\sum_{n=1}^{\infty} a_n$ converges to the sum S".

(b) Prove from the definition that the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converges to the sum 1.

- 5. (a) State the definition of "the function f is continuous at the point x_0 " in the form "for every $\epsilon > 0 \dots$ ".
 - (b) Prove from the definition that the function $f(x) = x^2$ is continuous at every point x_0 .

Final Examination

- 6. (a) State the definition of "the function f is differentiable at the point a".
 - (b) Prove from the definition that the function $f(x) = x^2$ is differentiable at every point a.
- 7. (a) State the definition of "the function f is integrable (in the sense of Riemann) on the interval [a, b]" in terms of upper sums and lower sums.
 - (b) Prove from the definition that the function $f(x) = x^2$ is integrable on the interval [0, 1].
- 8. This question concerns the power series $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$. In answering this question, you may cite relevant theorems from the course.
 - (a) Show that the series converges for every x in the closed interval [-1, 1].
 - (b) Does the series represent an integrable function on the closed interval [-1, 1]? Explain why or why not.