Math 409-502

Harold P. Boas
boas@tamu.edu

Announcement

Math Club Meeting
Monday, November 15 at 7:30 PM

Blocker 156
Speaker: Jeff Nash, Aggie former student, from Veritas DGC
Title: Math and Seismic Imaging
FREE FOOD

The derivative and applications

The definition: $f^{\prime}(a):=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
Some applications:

- the mean-value theorem
- l'Hôpital's rule
- monotonicity; extreme values

The mean-value theorem generalized

Cauchy's form of the mean-value theorem: Suppose f and g are continuous functions on $[a, b]$ that are differentiable on (a, b). Then there exists a point c in (a, b) for which

$$
\left(\frac{f(b)-f(a)}{b-a}\right) g^{\prime}(c)=\left(\frac{g(b)-g(a)}{b-a}\right) f^{\prime}(c)
$$

or $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$ if the denominators are non-zero.
Proof. Set $h(x)=\left(\frac{f(b)-f(a)}{b-a}\right) g(x)-\left(\frac{g(b)-g(a)}{b-a}\right) f(x)$.
A computation shows that $h(a)=h(b)$, so by the ordinary mean-value theorem, there is a point c for which $h^{\prime}(c)=0$. That reduces to the desired conclusion.

A best-selling author

Guillaume François Antoine Marquis de L'Hôpital

Author of the first calculus textbook:
Analyse des infiniment petits

L'Hôpital's rule(s)

If f and g are differentiable functions, and if $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is a formally undefined expression of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ if the second limit exists.
Variations: one-sided limits; $x \rightarrow \infty$.
Example. $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}$ is formally $\frac{\infty}{\infty}$. L'Hôpital's rule says that the limit equals $\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0$.
Example. $\lim _{x \rightarrow 0^{+}} x \ln (x)$ is formally $0 \cdot(-\infty)$. Rewrite as $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{1 / x}$. L'Hôpital's rule says that the limit equals $\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}}=\lim _{x \rightarrow 0^{+}}(-x)=0$.

Proof of one version of L'Hôpital's rule

Theorem. Suppose f and g are differentiable for large x and $\lim _{x \rightarrow \infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} g(x)=\infty$. If $\lim _{x \rightarrow \infty} f^{\prime}(x) / g^{\prime}(x)=\infty$, then $\lim _{x \rightarrow \infty} f(x) / g(x)=\infty$.

Proof. Fix $M>0$. We must find b such that $f(x) / g(x)>M$ when $x>b$.
By hypothesis, there is a such that $f(a)>0$ and $f^{\prime}(c) / g^{\prime}(c)>2 M$ when $c \geq a$. Moreover, there is $b>a$ such that $|g(a) / g(x)|<1 / 2$ when $x>b$.

Apply Cauchy's mean-value theorem when $x>b$ to get
$\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}>2 M$.
Then $f(x)>f(x)-f(a)>2 M(g(x)-g(a))$, so $f(x) / g(x)>2 M\left(1-\frac{g(a)}{g(x)}\right)>2 M\left(1-\frac{1}{2}\right)=M$.

Homework

1. Read sections 15.2-15.4, pages 212-217.
2. Do Exercise 14.3/2 on page 206.
3. Do Exercise 15.4/2 on page 219.
