Math 409-502

Harold P. Boas
boas@tamu.edu

Announcement

Math Club Meeting today
Monday, November 15 at 7:30 PM
Blocker 156
Speaker: Jeff Nash, Aggie former student, from Veritas DGC
Title: Math and Seismic Imaging
FREE FOOD

Taylor's theorem

If f is $(n+1)$ times differentiable on an interval, and if x and a are points of the interval, then there is some point c between x and a for which $f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+$ $\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}+\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}$.

Example. Take $f(x)=\sin (x)$ and $a=0$. Then $f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=0, f^{\prime \prime \prime}(0)=-1$, $f^{(4)}(0)=0, f^{(5)}(c)=\cos (c)$. So there is some c between 0 and x for which $\sin (x)=0+1 \cdot x^{1}+0 \cdot x^{2}-\frac{1}{3!} x^{3}+0 \cdot x^{4}+\frac{\cos (c)}{5!} x^{5}$.

In particular, $\left|\sin (x)-\left(x-\frac{1}{3!} x^{3}\right)\right| \leq \frac{1}{5!}|x|^{5}$. So (for instance) $\sin (0.1) \approx 0.1-\frac{1}{3!}(0.1)^{3}$ with error less than 10^{-7}.

Taylor series

Example. Generalizing the preceding example, write
$\sin (x)=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots+(-1)^{n} \frac{1}{(2 n+1)!} x^{2 n+1}+(-1)^{n+1} \frac{\cos (c)}{(2 n+3)!} x^{2 n+3}$ for some point c between 0 and x.
Because $|\cos (c)| \leq 1$ for every c, and $\lim _{n \rightarrow \infty} x^{2 n+3} /(2 n+3)!=0$, taking the limit gives
$\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$, the Taylor series for $\sin (x)$ at 0 .
A function that can be represented by a Taylor series in powers of $(x-a)$ is called analytic at a.
The case $a=0$ (illustrated above) is often called a Maclaurin series.
Some examples of analytic functions are polynomials, $\sin (x), \cos (x)$, and e^{x} (for all x); also $1 /(1-x)$ for $|x|<1$.

A strange example

$$
f(x)= \begin{cases}e^{-1 / x^{2}}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

This function is not analytic at 0 . The Maclaurin series converges, but not to the function. In fact, every Maclaurin series coefficient is equal to 0 .
$f^{\prime}(0)=\lim _{x \rightarrow 0^{+}} \frac{e^{-1 / x^{2}}}{x}=\lim _{t \rightarrow \infty} \frac{e^{-t^{2}}}{1 / t}=\lim _{t \rightarrow \infty} \frac{t}{e^{t^{2}}} \stackrel{1^{\prime} H o ̂ p i t a l}{=} \lim _{t \rightarrow \infty} \frac{1}{2 t e^{t^{2}}}=0$, and similarly for higher-order derivatives.

Homework

1. Read section 17.4, pages 236-238.
2. The third examination is scheduled for Wednesday, December 1.

One of the problems on the exam will be to prove a version of l'Hôpital's rule selected from the following eight possibilities:

$$
\begin{aligned}
& \left\{\frac{0}{0} \text { or } \frac{\infty}{\infty}\right\} \\
& \text { and } \quad\{x \rightarrow a \text { or } x \rightarrow \infty\} \\
& \text { and } \quad\left\{\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \text { or } \lim \frac{f^{\prime}(x)}{g^{\prime}(x)}=\infty\right\} \text {. }
\end{aligned}
$$

Work on proofs of two cases (to discuss in class).

