Math 409-502

Harold P. Boas
boas@tamu.edu

Integration

Some vocabulary

- partition
- mesh
- refinement
- upper sum
- lower sum
- Riemann sum
- integrable function

Some theorems

- Bounded monotonic functions are integrable.
- Bounded continuous functions are integrable.
- Integration and differentiation are inverse operations (fundamental theorem of calculus).

Math 409-502
November 17, 2004 - slide \#2

Partition and mesh

A partition of a compact interval $[a, b]$ is a subdivision of the interval.

A partition of the interval: division points 1, 2, 4, 5

Symbolic notation for the division points

The mesh of a partition is the maximum width of the subintervals. In the above example, the mesh is $4-2=2$.

Upper sum

The upper sum of a bounded function for a partition of a compact interval means the sum over the subintervals of the supremum of the function on the subinterval times the width of the subinterval.

Symbolic notation: $\sum_{j=1}^{n}\left(x_{j}-x_{j-1}\right) \sup _{\left[x_{j-1}, x_{j}\right]} f(x)$.

Lower sum

The lower sum is defined similarly with the infimum in place of the supremum.

Symbolic notation: $\sum_{j=1}^{n}\left(x_{j}-x_{j-1}\right) \inf _{\left[x_{j-1}, x_{j}\right]} f(x)$.

Integrable functions

A function defined on a compact interval $[a, b]$ is integrable if (i) the function is bounded, and (ii) for every $\epsilon>0$, there exists $\delta>0$ such that for every partition of mesh $<\delta$ the upper sum for the partition and the lower sum for the partition differ by less than ϵ.

Example. A constant function is integrable because every upper sum equals every lower sum.
Example. $f(x)= \begin{cases}1, & \text { if } x \text { is rational } \\ 0, & \text { if } x \text { is irrational }\end{cases}$
is not integrable because every lower sum equals 0 , but every upper sum equals the width of the interval.

Homework

- Read sections 18.1 and 18.2, pages 241-244.
- Consider the integrable function $f(x)=x$ on the interval $[1,2]$. How small must the mesh of a partition be in order to guarantee that the upper sum and the lower sum differ by less than $1 / 10$?
- Do exercise 18.2/3 on page 248.

