# Math 409-502

Harold P. Boas boas@tamu.edu

### Results on the second exam

Maximum 96 Median 81 Minimum 48

Math 409-502

November 3, 2004 — slide #2



## Problem 4(b) on the exam

If a function *g* has a jump discontinuity at 0, and a function *h* is continuous at 0, then the product function *gh* has a jump discontinuity at 0.

## True or false?

"Jump discontinuity" means that *g* has one-sided limits, but  $\lim_{x\to 0^-} g(x) \neq \lim_{x\to 0^+} g(x)$ .

Since *h* is continuous, the product function *gh* has one-sided limits equal to  $h(0) \cdot \lim_{x \to 0^-} g(x)$  and

 $h(0) \cdot \lim_{x \to 0^+} g(x)$ . These one-side limits are equal when h(0) = 0 and unequal when  $h(0) \neq 0$ .

So the answer is "false", but the statement is true most of the time (whenever  $h(0) \neq 0$ ).

Math 409-502

November 3, 2004 — slide #4

## Problem 4(a) on the exam

If a function f is locally bounded on an interval, then f is bounded on the interval.

#### True or false?

Theorem 10.4 on page 146 says the statement is true if the interval is *compact*.

On non-compact intervals, however, the statement is false. Example: 1/x on the open interval (0, 1).

Math 409-502

November 3, 2004 — slide #5

## Problem 3(b) on the exam

Prove from the  $\epsilon$ - $\delta$  definition that the function 1/x is continuous at the point 1.

Fix  $\epsilon > 0$ . We must find  $\delta > 0$  such that  $\left|\frac{1}{x} - 1\right| < \epsilon$ whenever  $|x - 1| < \delta$ . Now  $\left|\frac{1}{x} - 1\right| = \frac{|x - 1|}{|x|}$ , and the difficulty is that the denominator could be small. One way to handle the difficulty is to take  $\delta = \min(\frac{1}{2}, \frac{\epsilon}{2})$ . If  $|x - 1| < \delta$ , then in particular  $|x - 1| < \frac{1}{2}$ , so  $x > \frac{1}{2}$ , whence  $\frac{1}{x} < 2$ . Then  $\frac{|x - 1|}{|x|} \le 2|x - 1| < 2\delta \le \epsilon$ . Thus we have the required  $\delta$ .

Math 409-502

November 3, 2004 — slide #6

#### Homework

Use the  $\epsilon$ - $\delta$  definition of continuity to prove that

- 1. the function  $1/x^2$  is continuous at the point 1;
- 2. the function 1/x is continuous at the point 1/10.

Math 409-502

November 3, 2004 — slide #7