Math 409-502

Harold P. Boas
boas@tamu.edu

Results on the second exam

Maximum 96
Median 81
Minimum 48

Problem 5 on the exam

Determine the radius of convergence of the power series $\sum_{n=0}^{\infty}\left(\frac{1+2^{n}}{1+n^{2}}\right) x^{n}$.
Solution. Here is one of several valid methods.
First observation: since the open interval of convergence $(-R, R)$ is symmetric, we may as well assume that $x>0$.
Second observation: now the asymptotic comparison test applies, so the new series $\sum_{n=1}^{\infty}\left(\frac{2^{n}}{n^{2}}\right) x^{n}$ converges for the same positive values of x.
By the root test, this new series converges when
$1>\lim _{n \rightarrow \infty} \frac{2 x}{n^{2 / n}}=2 x$.
So the radius of convergence is $1 / 2$.

Problem 4(b) on the exam

If a function g has a jump discontinuity at 0 , and a function h is continuous at 0 , then the product function $g h$ has a jump discontinuity at 0 .

True or false?
"Jump discontinuity" means that g has one-sided limits, but $\lim _{x \rightarrow 0^{-}} g(x) \neq \lim _{x \rightarrow 0^{+}} g(x)$.
Since h is continuous, the product function $g h$ has one-sided limits equal to $h(0) \cdot \lim _{x \rightarrow 0^{-}} g(x)$ and $h(0) \cdot \lim _{x \rightarrow 0^{+}} g(x)$. These one-side limits are equal when $h(0)=0$ and unequal when $h(0) \neq 0$.

So the answer is "false", but the statement is true most of the time (whenever $h(0) \neq 0$).

Problem 4(a) on the exam

If a function f is locally bounded on an interval, then f is bounded on the interval.
True or false?
Theorem 10.4 on page 146 says the statement is true if the interval is compact.
On non-compact intervals, however, the statement is false. Example: $1 / x$ on the open interval $(0,1)$.

Problem 3(b) on the exam

Prove from the $\epsilon-\delta$ definition that the function $1 / x$ is continuous at the point 1 .
Fix $\epsilon>0$. We must find $\delta>0$ such that $\left|\frac{1}{x}-1\right|<\epsilon$
whenever $|x-1|<\delta$. Now $\left|\frac{1}{x}-1\right|=\frac{|x-1|}{|x|}$, and the difficulty is that the denominator could be small.

One way to handle the difficulty is to take $\delta=\min \left(\frac{1}{2}, \frac{\epsilon}{2}\right)$.
If $|x-1|<\delta$, then in particular $|x-1|<\frac{1}{2}$, so $x>\frac{1}{2}$,
whence $\frac{1}{x}<2$.
Then $\frac{|x-1|}{|x|} \leq 2|x-1|<2 \delta \leq \epsilon$.
Thus we have the required δ.

Homework

Use the $\epsilon-\delta$ definition of continuity to prove that

1. the function $1 / x^{2}$ is continuous at the point 1 ;
2. the function $1 / x$ is continuous at the point $1 / 10$.
