Math 409-502

Harold P. Boas
boas@tamu.edu

Uniform continuity

Recall that a function f is continuous on an interval if for every point a in the interval and for every positive number ϵ there exists a positive number δ such that $|f(x)-f(a)|<\epsilon$ for all x satisfying the inequality $|x-a|<\delta$.
Here the choice of δ may depend on both the point a and the number ϵ.
A function f is uniformly continuous on an interval if for every positive number ϵ there exists a positive number δ such that $|f(x)-f(a)|<\epsilon$ for all x and a satisfying the inequality $|x-a|<\delta$. Here the choice of δ may depend only on the number ϵ.

Examples for uniform continuity

1. On the interval $(0,1)$, the function x^{2} is uniformly continuous.

Proof: Fix $\epsilon>0$. For all points x and a in the interval $(0,1),\left|x^{2}-a^{2}\right|=|(x-a)(x+a)|$ $\leq 2|x-a|$. Therefore the choice $\delta=\epsilon / 2$ works in the definition of uniform continuity.
2. On the interval $(0,1)$, the function $1 / x$ is not uniformly continuous.

Proof: Take $\epsilon=1$. Suppose there were a positive δ such that $\left|\frac{1}{x}-\frac{1}{a}\right|<1$ for all x and a satisfying the inequality $|x-a|<\delta$. Leaving a arbitrary, set $x=a+\frac{1}{2} \delta$. Then $\left|\frac{1}{x}-\frac{1}{a}\right|=$ $\frac{\frac{1}{2} \delta}{a\left(a+\frac{1}{2} \delta\right)}$, which tends to ∞ as $a \rightarrow 0^{+}$. This contradiction shows that the function is not uniformly continuous on the interval $(0,1)$.

Uniform continuity on compact intervals

Theorem. A continuous function on a compact interval is automatically uniformly continuous on the interval.

Proof (different from the proof in the book). Fix $\epsilon>0$. Suppose there were no positive δ that works uniformly on the interval.

Bisect the interval. For at least one half, there is no δ that works uniformly on that half. Bisect again, and iterate.

We get nested compact intervals on each of which there is no δ that works for the given fixed ϵ. The intervals converge to some point a in the original interval.

The function is continuous at a, so there is some positive δ for which the values of the function are all within ϵ of each other on the interval $(a-\delta, a+\delta)$.
The contradiction shows that the function must be uniformly continuous after all.

Homework

1. Read section 13.5, pages 190-192.
2. The interval $[0, \infty)$ is not compact. Show nonetheless that the function \sqrt{x} is uniformly continuous on this unbounded interval.
3. The interval $(0,1)$ is not compact. Determine (with proof) whether $\sin (1 / x)$ is uniformly continuous on this open interval.
