Math 409-502

Harold P. Boas
boas@tamu.edu

The derivative

Definition. A function f is differentiable at a point a if the $\operatorname{limit} \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ exists. The limit, if it exists, is called the derivative and is denoted by $f^{\prime}(a)$.

Example 1. If $f(x)=x^{2}$, then $f^{\prime}(5)=\lim _{x \rightarrow 5} \frac{x^{2}-5^{2}}{x-5}=\lim _{x \rightarrow 5}(x+5)=10$.
Example 2. If $f(x)=|x|$, then $f^{\prime}(0)$ does not exist. Indeed, $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} 1=1$, but $\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}}-1=-1$. So there is a right-hand derivative $f^{\prime}\left(0^{+}\right)$and there is a left-hand derivative $f^{\prime}\left(0^{-}\right)$, but they are not equal.

The mean-value theorem

Theorem. If f is a continuous function on a compact interval $[a, b]$, and if f is differentiable at all interior points of the interval, then there exists an interior point c for which $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Example application. If the derivative of a function is identically equal to zero on an interval, then the function is constant on the interval.

Proof. Fix a point a in the interval. Let b be any other point.
By the mean-value theorem, there is a point c for which $f(b)-f(a)=f^{\prime}(c)(b-a)=0$. So $f(b)=f(a)$ for every point b.

Proof of the mean-value theorem

Let g be the difference between f and the line joining the points $(a, f(a))$ and $(b, f(b)): g(x)=$ $f(x)-\left(f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right)$.
We seek a point c for which $g^{\prime}(c)=0$.
The function g is continuous on the compact interval $[a, b]$, so g attains a maximum value and a minimum value. One of these must be attained at an interior point c because $g(a)=0$ and $g(b)=0$. We may suppose the maximum is attained at c.
Then $g(x)-g(c) \leq 0$ for all x, so when $x-c>0$ we have $\frac{g(x)-g(c)}{x-c} \leq 0$, whence $g^{\prime}\left(c^{+}\right) \leq 0$. If $x-c<0$, then $\frac{g(x)-g(c)}{x-c} \geq 0$, so $g^{\prime}\left(c^{-}\right) \geq 0$.
By hypothesis, the derivative $g^{\prime}(c)$ exists, so the one-sided derivatives are equal. Thus $g^{\prime}(c)=0$ as required.

Homework

1. Read Chapter 14 (pages 196-204) and section 15.1 (pages 210-211).
2. Do Exercise 14.1/3 on page 205.
3. Do Exercise 15.1/4 on page 218.
