Math 409-502

Harold P. Boas
boas@tamu.edu

Reminders on radius of convergence

We can find the radius of convergence of a power series by either the ratio test or the root test, but some other test is needed to determine the endpoint behavior.

Useful tests for endpoint behavior are:

- n th-term test
- comparison tests
- alternating series test

Follow-up on endpoint convergence

Last time we saw (by the ratio test) that $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!} x^{n}$ has radius of convergence equal to 4 , and $\sum_{n=1}^{\infty} \frac{n!x^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}$ has radius of convergence equal to 2 . At the right-hand endpoint, both series become $\sum_{n=1}^{\infty} \frac{(n!)^{2} 4^{n}}{(2 n)!}$. That series diverges by the n th-term test. Indeed, $4^{n}=(1+1)^{2 n}=1+\binom{2 n}{1}+\binom{2 n}{2}+\cdots+\binom{2 n}{n}+\cdots+\binom{2 n}{1}+1$, so $4^{n}>\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}}$. Thus $\frac{(n!)^{2} 4^{n}}{(2 n)!}>1$, so the series cannot converge. For the same reason, divergence occurs at the lefthand endpoint in this example.

Operations on power series

Addition, subtraction, multiplication, and division of power series work the way you expect.

Example

$$
\begin{aligned}
& \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
& \sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
\end{aligned}
$$

so the coefficient of x^{5} in the product $\cos (x) \sin (x)$ equals $\frac{1}{5!}+\frac{1}{2!3!}+\frac{1}{4!}=\frac{2}{15}$.

Remark on the multiplication theorem

Theorem (page 121): If $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ both converge absolutely, then the product of the two series equals the absolutely convergent series $\sum_{n=0}^{\infty} c_{n}$, where $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

Counterexample in case of conditional convergence: Set $a_{n}=b_{n}=(-1)^{n} / \sqrt{n+1}$. Then $\sum a_{n}$ and $\sum b_{n}$ are conditionally convergent by the alternating series test, but the series $\sum c_{n}$ is divergent. Indeed, $c_{n}=\sum_{k=0}^{n} \frac{(-1)^{k}(-1)^{n-k}}{\sqrt{k+1} \sqrt{n-k+1}}$. All the terms in this sum have the same $\operatorname{sign}(-1)^{n}$, so $\left|c_{n}\right| \geq \sum_{k=0}^{n} \frac{1}{n+1}=1$. Hence $\sum c_{n}$ diverges.

Homework

1. Read Chapter 9, pages 125-134.
2. Do Exercises 9.2/3 and 9.3/1, pages 134-135.
