Math 409-502

Harold P. Boas
boas@tamu.edu

Continuous functions

The function f is continuous at the point a if for every $\epsilon>0$ there exists $\delta>0$ such that $|f(x)-f(a)|<\epsilon$ whenever $|x-a|<\delta$.

The sum and product of continuous functions are continuous; so is the quotient if the denominator is not zero.

The composition of two continuous functions is continuous.

Limits of functions

$\lim _{x \rightarrow a} f(x)=L$ means that for every $\epsilon>0$ there exists $\delta>0$ such that $|f(x)-L|<\epsilon$ whenever $0<|x-a|<\delta$.
$\lim _{x \rightarrow \infty} f(x)=L$ means that for every $\epsilon>0$ there exists N such that $|f(x)-L|<\epsilon$ whenever $x>N$.
$\lim _{x \rightarrow a} f(x)=\infty$ means that for every N there exists $\delta>0$ such that $f(x)>N$ whenever $0<$ $|x-a|<\delta$.
$\lim _{x \rightarrow \infty} f(x)=\infty$ means that for every N there exists M such that $f(x)>N$ whenever $x>M$.

Homework

1. Read sections $11.3,11.4$, and 11.5 , pages $158-167$.
2. Do exercises $11.4 / 1$ and $11.5 / 1$ on page 168 .
