Math 409-502

Harold P. Boas
boas@tamu.edu

Compactness

Definition

An interval is called compact if the interval is both closed and bounded.

Examples

- The interval $[-1,1]$ is compact.
- The interval $[0,1)$ is not compact. (It is bounded but not closed.)
- The interval $[0, \infty)$ is not compact. (It is closed but not bounded.)

The key property is that a sequence of points in a compact interval must have a cluster point that is still in the interval.
Math 409-502
October 22, 2004 - slide \#2

Continuous functions on compact intervals

Theorem. If f is a continuous function on a compact interval, then the range of f is again a compact interval.

The conclusion of the theorem has three parts.

1. The range is an interval.
2. The range is bounded.
3. The range contains the endpoints of the interval.

- The first part is the Intermediate Value Theorem.
- The second part says that the function has a finite supremum and a finite infimum.
- The third part says that the function attains a maximum value and a minimum value.

Why did the chicken cross the road?

Theorem (Intermediate Value Theorem). If f is a continuous function on the (compact) interval $[a, b]$, then every number between $f(a)$ and $f(b)$ is in the range of f.

Example

Show that the function $x^{5}-4 x^{2}+e^{x}$ has a zero between $x=0$ and $x=1$.
Solution. At $x=0$ the function has the value 1 , and at $x=1$ the function has the value $-3+e<0$. By the theorem, the function takes the intermediate value 0 somewhere in the interval $(0,1)$.

Using the bisection method, we could locate the zero of the function more precisely.

Math 409-502
October 22, 2004 - slide \#4

Proof of the intermediate value theorem

The book gives a proof (page 173) using the Nested Interval Theorem. Here is a different proof.
Without loss of generality, it may be assumed that $f(a)<f(b)$.
We need to show that if k is a number such that $f(a)<k<f(b)$, then the number k is in the range of f.

Let S denote the set of points c with the property that $f(x)<k$ for all x in the interval $[a, c]$. The set S is non-empty because $f(a)<k$ and f is continuous. Let d denote the supremum of S. Claim: $f(d)=k$.

Because f is continuous, $f(d)=\lim _{n \rightarrow \infty} f\left(d-\frac{1}{n}\right)$, so $f(d) \leq k$
(by the limit location theorem). It cannot be that $f(d)<k$ (strict inequality), because then there would be points to the right of d in the set S (again by the continuity of f). So the claim holds.

Homework

- Read sections 12.1 and 12.2, pages 172-177.
- Do Exercises 12.1/1 and 12.1/5 on page 180.

