Math 409-502

Harold P. Boas
boas@tamu.edu

Summary of convergence tests

- If $a_{n} \nrightarrow 0$, then $\sum_{n} a_{n}$ diverges.
- Comparison tests for positive series: if $a_{n} \leq b_{n}$ for all large n, or alternatively if a_{n} / b_{n} has a finite limit, then convergence of $\sum_{n} b_{n}$ implies convergence of $\sum_{n} a_{n}$.
- Absolute convergence implies convergence: if $\sum_{n}\left|a_{n}\right|$ converges, then so does $\sum_{n} a_{n}$.
- Ratio and root tests: if either $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}$ or $\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|$ exists and is strictly less than 1 , then $\sum_{n} a_{n}$ converges.
- Special tests for decreasing positive terms a_{n} :
(i) if $f(x) \downarrow 0$ as $x \rightarrow \infty$, then $\int^{\infty} f(x) d x$ and $\sum^{\infty} f(n)$ have the same convergence/divergence behavior (integral test); (ii) if $a_{n} \downarrow 0$, then $\sum_{n}(-1)^{n} a_{n}$ converges (alternating series test).

Cauchy's condensation test

Another special test for decreasing terms

Suppose $0<a_{n+1} \leq a_{n}$ for all (large) n. Then the two series $\sum_{n} a_{n}$ and $\sum_{n} 2^{n} a_{2^{n}}$ either both converge or both diverge.

Example: $\sum_{n} \frac{1}{n \ln (n)}$

Since $\frac{1}{n \ln (n)}$ is a decreasing function of n, the test applies and says that the convergence/divergence behavior is the same as for the series $\sum_{n} 2^{n} \frac{1}{2^{n} \ln \left(2^{n}\right)}$. That simplifies to $\sum_{n} \frac{1}{n \ln (2)}$, which is a multiple of the divergent harmonic series. Therefore the original series $\sum_{n} \frac{1}{n \ln (n)}$ diverges too.

Proof of the condensation test (sketch)

$$
\begin{aligned}
a_{8}+a_{9}+\cdots+a_{15} & \leq 8 a_{8}
\end{aligned} \leq 2\left(a_{4}+a_{5}+a_{6}+a_{7}\right) ~ 子 ~\left(16 a_{16} \leq 2\left(a_{8}+a_{9}+\cdots+a_{15}\right)\right.
$$

Adding such inequalities shows that partial sums of $\sum_{n} 2^{n} a_{2^{n}}$ are bounded below by partial sums of $\sum_{n} a_{n}$ and are bounded above by twice the partial sums of $\sum_{n} a_{n}$. Therefore the two series have the same convergence/divergence behavior.

Power series

Example: $\sum_{n=1}^{\infty} \frac{x^{n}}{2^{n} \sqrt{n}}$
For which values of x does that series converge?
[This is Exercise 8.1/1a on page 123.]

Solution:

By the root test, the series converges (absolutely) when

$$
1>\lim _{n \rightarrow \infty}\left|\frac{x^{n}}{2^{n} \sqrt{n}}\right|^{1 / n}=\lim _{n \rightarrow \infty} \frac{|x|}{2 \sqrt{n^{1 / n}}}=\frac{|x|}{2}
$$

that is, when $|x|<2$.
The series diverges when $|x|>2$ by the (proof of the) root test.
A different test is needed to see what happens when $x= \pm 2$.

Homework

- Read section 8.1, pages 114-117.
- Do Exercise 7.6/1a,c on page 111.
- Do Exercise 8.1/1g on page 123.

