Math 409-502

Harold P. Boas
boas@tamu.edu

Limit theorems

Sums, products, and quotients

If $a_{n} \rightarrow L$ and $b_{n} \rightarrow M$ then $a_{n}+b_{n} \rightarrow L+M$; and $a_{n} \cdot b_{n} \rightarrow L \cdot M$;
and if in addition $L \neq 0$ then $b_{n} / a_{n} \rightarrow M / L$.
[In the third case, $a_{n} \neq 0$ when n is large, so b_{n} / a_{n} makes sense for n large.]

Squeeze theorem

If $a_{n} \leq b_{n} \leq c_{n}$ for all sufficiently large n, and if the sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{c_{n}\right\}_{n=1}^{\infty}$ both converge to the same limit, then the sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ converges, and to the same limit.

Limit theorems continued

Location theorems

If $a_{n} \rightarrow L$ and if $a_{n}<M$ for all sufficiently large n, then $L \leq M$.
The example $a_{n}=n /(n+1)$ shows that we cannot draw the conclusion $L<M$.
If $a_{n} \rightarrow L$ and $L<M$, then $a_{n}<M$ for all sufficiently large n.
The example $a_{n}=(n+1) / n$ shows that the hypothesis $L \leq M$ is insufficient.

Subsequences

A non-convergent sequence may have convergent subsequences.
Example:

$$
\frac{1}{4}, \frac{3}{4}, 2, \frac{1}{8}, \frac{7}{8}, 4, \frac{1}{16}, \frac{15}{16}, 8, \frac{1}{32}, \frac{31}{32}, 16, \ldots
$$

If a sequence converges, however, then every subsequence converges to the same limit.
Example: $\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{11}, \frac{1}{13}, \frac{1}{17}, \frac{1}{19}, \ldots$ is a subsequence of the convergent sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$, so it converges to 0 .

Homework

1. Read sections 5.4 and 5.5 , pages $68-73$.
2. Do Problem 5-7, page 75.
