Math 409-502

Harold P. Boas boas@tamu.edu

Limit theorems

Sums, products, and quotients

If $a_n \to L$ and $b_n \to M$ then $a_n + b_n \to L + M$; and $a_n \cdot b_n \to L \cdot M$; and if in addition $L \neq 0$ then $b_n/a_n \to M/L$. [In the third case, $a_n \neq 0$ when *n* is large, so b_n/a_n makes sense for *n* large.]

Squeeze theorem

If $a_n \leq b_n \leq c_n$ for all sufficiently large n, and if the sequences $\{a_n\}_{n=1}^{\infty}$ and $\{c_n\}_{n=1}^{\infty}$ both converge to the same limit, then the sequence $\{b_n\}_{n=1}^{\infty}$ converges, and to the same limit.

Math 409-502

September 17, 2004 — slide #2

Limit theorems continued

Location theorems

If $a_n \to L$ and if $a_n < M$ for all sufficiently large n, then $L \le M$. The example $a_n = n/(n+1)$ shows that we cannot draw the conclusion L < M.

If $a_n \to L$ and L < M, then $a_n < M$ for all sufficiently large n. The example $a_n = (n+1)/n$ shows that the hypothesis $L \le M$ is insufficient.

Math 409-502

September 17, 2004 — slide #3

Subsequences

A non-convergent sequence may have convergent *subsequences*.

Example:

$$\frac{1}{4}, \frac{3}{4}, 2, \frac{1}{8}, \frac{7}{8}, 4, \frac{1}{16}, \frac{15}{16}, 8, \frac{1}{32}, \frac{31}{32}, 16, \dots$$

If a sequence converges, however, then every subsequence converges to the same limit.

Example: $\frac{1}{3}$, $\frac{1}{5}$, $\frac{1}{7}$, $\frac{1}{11}$, $\frac{1}{13}$, $\frac{1}{17}$, $\frac{1}{19}$, ... is a subsequence of the convergent sequence $\{\frac{1}{n}\}_{n=1}^{\infty}$, so it converges to 0.

Math 409-502

September 17, 2004 — slide #4

Homework

- 1. Read sections 5.4 and 5.5, pages 68–73.
- 2. Do Problem 5-7, page 75.

Math 409-502

September 17, 2004 — slide #5