Advanced Calculus I

Instructions Solve six of the following seven problems. Please write your solutions on your own paper.

These problems should be treated as essay questions. A problem that says "determine" or "true/false" or "give an example" requires a supporting explanation. Please explain your reasoning in complete sentences.

1. Determine the largest natural number n such that $\left|n^{2}-2\right|<18$.
2. Let E denote the set of real numbers having decimal expansions

$$
0 . a b c d \ldots
$$

that do not contain the digit 5 . Determine the supremum of the set E.
3. Suppose that a sequence $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ of real numbers is defined recursively as follows:

$$
\begin{align*}
x_{1} & =1, \quad \text { and } \\
x_{n+1} & =\sqrt{6+x_{n}} \quad \text { when } n \in \mathbf{N} .
\end{align*}
$$

(The square-root symbol indicates the positive square root.)
Prove that $x_{n}<3$ for every natural number n.
4. Give an example of a bijective function $f: \mathbf{R} \rightarrow(0, \infty)$.
[Recall that "bijective" means both one-to-one and onto.]
5. True or false: If E is an uncountable subset of \mathbf{R}, then the complement $\mathbf{R} \backslash E$ is a countable set.
6. (a) State the definition of what $\lim _{n \rightarrow \infty} x_{n}=L$ " means.
(b) Use the definition to prove that $\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$.
7. Prove that the sequence (\dagger) defined in problem 3 converges. [For the purposes of this problem, you may assume that the conclusion of problem 3 is valid. The value of $\lim _{n \rightarrow \infty} x_{n}$ actually is equal to 3 , but you are not required to prove that.]

