Math $3^{2}+20^{2} \quad$ Exam $2 \quad$ Spring $1^{3}+4^{3}+6^{3}+9^{3}+10^{3}$

Advanced Calculus I

Instructions Solve six of the following seven problems. Please write your solutions on your own paper.

These problems should be treated as essay questions. A problem that says "determine" or "true/false" or "give an example" requires a supporting explanation. Please explain your reasoning in complete sentences.

1. If x_{1}, x_{2}, \ldots is a Cauchy sequence of real numbers, is it necessarily true that $\left|x_{1}\right|,\left|x_{2}\right|, \ldots$ is a Cauchy sequence too? Give a proof or a counterexample, whichever is appropriate.
2. (a) State the definition of what " $\lim _{x \rightarrow 0} f(x)=0$ " means.
(b) Use the definition to prove that $\lim _{x \rightarrow 0} e^{-1 / x^{2}}=0$.
3. Evidently $2^{x}=x^{2}$ when $x=2$ and when $x=4$. Are there any negative values of the real number x for which $2^{x}=x^{2}$? Explain how you know. [You may assume that 2^{x} is an everywhere differentiable function of x.]
4. If $f(x)=\sin (x)$ for every real number x, is the function $f: \mathbf{R} \rightarrow \mathbf{R}$ uniformly continuous on R? Explain why or why not.
5. Suppose that

$$
f(x)= \begin{cases}x \cos (1 / x), & \text { when } x \neq 0 \\ 0, & \text { when } x=0\end{cases}
$$

Is the function f differentiable at the point where $x=0$? Explain why or why not.
6. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is a differentiable function, and $\lim _{x \rightarrow \infty} f^{\prime}(x)=3$. Determine $\lim _{x \rightarrow \infty}(f(x+2)-f(x))$.
7. Suppose $f(x)=\frac{2}{1+x}$ for every positive real number x, and let g denote the iterated composition $\underbrace{f \circ f \circ \cdots \circ f}_{409 \text { copies of } f}$. Determine the derivative $g^{\prime}(1)$.

