A Definitions and examples

1. Continuity

- (a) State the definition of " $f: (0,1) \to \mathbf{R}$ is continuous".
- (b) Give a concrete example of a continuous function.
- (c) Give a concrete example of a function that is not continuous.

2. Differentiability

- (a) State the definition of " $f: (0,1) \to \mathbf{R}$ is differentiable".
- (b) Give a concrete example of a function that is differentiable.
- (c) Give a concrete example of a function that is not differentiable.
- 3. Integrability
 - (a) State the definition of " $f: [0,1] \to \mathbf{R}$ is Riemann integrable".
 - (b) Give a concrete example of a function that is Riemann integrable.
 - (c) Give a concrete example of a function that is not Riemann integrable.

B Theorems and proofs

Here are some of the important theorems from the course:

- Bolzano–Weierstrass theorem
- Intermediate-value theorem
- Mean-value theorem
- Taylor's formula
- l'Hôpital's rule
- Fundamental theorem of calculus
- 4. Give careful statements of *three* of the indicated theorems. (For a theorem that has several versions, state any one version.)
- 5. Prove *one* of the indicated theorems. (For a theorem that has several versions, prove any one version.)

Math 409

Final Exam Advanced Calculus I

C Problems

Solve *two* of the following four problems.

- 6. Prove that $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$ for every natural number n.
- 7. Prove that $\left\{n\sin\left(\frac{1}{n}\right)\right\}_{n=1}^{\infty}$ is a Cauchy sequence.
- 8. Define $f: (0, \infty) \to (0, \infty)$ by setting f(x) equal to xe^x for each positive real number x. Prove that f has an inverse function, and evaluate the derivative $(f^{-1})'(e)$.
- 9. Let a_n equal $\int_1^n \frac{\sin(x)}{\sqrt{x}} dx$ for each natural number n. Prove that $\lim_{n\to\infty} a_n$ exists.