
Math 409 Exam 1

Advanced Calculus I
Spring 2010

Instructions Solve six of the following seven problems. Please write your
solutions on your own paper.

These problems should be treated as essay questions. A problem that
says “determine” or “true/false” or “give an example” requires a supporting
explanation. Please explain your reasoning in complete sentences.

1. Determine the largest natural number n such that |n2 − 2| < 18.

Solution. By the definition of absolute value, the given inequality is
equivalent to the following double inequality:

−18 < n2 − 2 < 18 or − 16 < n2 < 20.

Since the square of a natural number is never negative, an equivalent
statement is that n2 < 20. The square function is increasing on the
natural numbers (by a homework exercise), so it is evident that natural
numbers 5 and larger fail to satisfy the inequality, while the natural
numbers 1, 2, 3, and 4 do satisfy the inequality. Thus the largest
natural number that satisfies the inequality is 4.

2. Let E denote the set of real numbers having decimal expansions

0.a b c d . . .

that do not contain the digit 5. Determine the supremum of the set E.

Solution. The supremum of E is equal to 1. To see why, first ob-
serve that 1 is an upper bound for the set of all decimal expansions
0.a b c d . . . and so too for the subset E (by the monotonicity property
of suprema). To show that 1 is the least upper bound, it suffices to find
an increasing sequence {xn}∞n=1 of elements of E tending to 1. Take
xn equal to 1 − 10−n. Evidently this sequence is increasing and has
limit 1. Moreover, each xn is an element of E because the decimal
expansion of 1− 10−n does not contain the digit 5. (Notice that a real
number like 0.99 can be written either as 0.99000 . . . or as 0.98999 . . .,
but this ambiguity in the decimal representation has no impact on the
preceding argument.)
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3. Suppose that a sequence {xn}n∈N of real numbers is defined recursively
as follows:

x1 = 1, and

xn+1 =
√
6 + xn when n ∈ N.

(†)

(The square-root symbol indicates the positive square root.)

Prove that xn < 3 for every natural number n.

Solution. The proof is by induction. Since x1 = 1 < 3, the basis
step holds. Suppose, then, that xn < 3 for a certain natural number n;
what needs to be shown is that xn+1 < 3. Adding 6 to both sides
of the induction hypothesis shows that 6 + xn < 9. By a homework
exercise, the square-root function is increasing on positive real numbers,
so xn+1 =

√
6 + xn <

√
9 = 3. Thus xn+1 < 3, as required. This

conclusion completes the induction proof.

4. Give an example of a bijective function f : R → (0,∞).
[Recall that “bijective” means both one-to-one and onto.]

Solution. Perhaps the simplest example is the exponential function:
f(x) = ex. You know from your first calculus course that this function
has an inverse function (the natural logarithm), hence is bijective.

Many other examples can be built using tools from your first calculus
course. The following piecewise-defined function is one such example:

g(x) =


1

1 + |x|
, if x < 0,

1 + x, if x ≥ 0.

Here is an example that uses only notions from within this course.
Express the domain R as the union

⋃
n∈Z(n− 1, n] of pairwise disjoint,

congruent intervals and the codomain (0,∞) similarly as the union⋃
n∈N(n − 1, n]. The set of integers is countable, so there exists a

bijective function h : Z → N. For each integer n, map the interval
(n− 1, n] bijectively to the interval (h(n)− 1, h(n)] by the translation
that sends each x in (n− 1, n] to h(n)− n+ x. This piecewise-defined
function maps R bijectively onto (0,∞).
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5. True or false: If E is an uncountable subset of R, then the complement
R \ E is a countable set.

Solution. The statement is false. For instance, if E = (0,∞), then
E is uncountable; the complementary set R \ E is (−∞, 0], which too
is uncountable.

Here are some more details. Every infinite subset of a countable set is
countable, so every superset of an uncountable set is uncountable. We
proved in class by Cantor’s diagonal argument that the interval (0, 1)
is uncountable. Therefore the superset (0,∞) is uncountable. The
reflection x 7→ −x is a bijection between (0,∞) and (−∞, 0), so the
latter set is uncountable. Therefore the superset (−∞, 0] is uncountable
too.

6. (a) State the definition of what “ lim
n→∞

xn = L ” means.

Solution. By definition, “ lim
n→∞

xn = L ” means that for every

positive real number ε, there exists a natural number N such that
|xn − L| < ε whenever n ≥ N .

(b) Use the definition to prove that lim
n→∞

n

n+ 1
= 1.

Solution. Let ε be an arbitrary positive real number; there is
no loss of generality in assuming that ε < 1. Set N equal to
the natural number b1/εc. Then N + 1 > 1/ε. If n ≥ N , then
n+ 1 > 1/ε, so ∣∣∣∣ n

n+ 1
− 1

∣∣∣∣ = 1

n+ 1
< ε.

Since the positive number ε is arbitrary, it follows from the defi-

nition of limit that lim
n→∞

n

n+ 1
= 1.

7. Prove that the sequence (†) defined in problem 3 converges.
[For the purposes of this problem, you may assume that the conclusion
of problem 3 is valid. The value of limn→∞ xn actually is equal to 3,
but you are not required to prove that.]
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Solution. According to problem 3, the sequence is bounded above. If
it can be shown additionally that the sequence is monotonically increas-
ing, then a theorem that we proved in class implies that the sequence
converges (moreover, the limit is the supremum of the sequence). Thus
what needs to be checked is that xn < xn+1 for every natural number n.

This monotonicity can be verified by induction. Since x1 = 1, and
x2 =

√
7 > 1, the basis step evidently holds. Suppose, then, that

xn < xn+1 for a certain natural number n; what needs to be shown is
that xn+1 < xn+2. Adding 6 to both sides of the induction hypothesis
shows that 6 + xn < 6 + xn+1. The monotonicity of the square-root
function on positive real numbers implies that

√
6 + xn <

√
6 + xn+1 ,

that is, xn+1 < xn+2. This conclusion completes the induction proof
that the sequence is strictly increasing.

Instead of using induction, one can give a direct proof of the monotonic-
ity as follows. Since xn < 3 (by problem 3), it follows by multiplying
both sides by 2 that 2xn < 6. Adding xn to both sides shows that
3xn < 6 + xn. Starting again from the property that xn < 3 and mul-
tiplying both sides by the positive number xn shows that x2

n < 3xn.
Combining the preceding two deductions by using transitivity of the
order relation shows that x2

n < 6 + xn. The square-root function is
strictly increasing on positive real numbers (by a homework exercise),
so xn <

√
6 + xn = xn+1. Thus the sequence {xn}∞n=1 is indeed strictly

increasing.
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