Math $3^{2}+20^{2} \quad$ Exam $2 \quad$ Spring $1^{3}+4^{3}+6^{3}+9^{3}+10^{3}$

Advanced Calculus I

Instructions Solve six of the following seven problems. Please write your solutions on your own paper.

These problems should be treated as essay questions. A problem that says "determine" or "true/false" or "give an example" requires a supporting explanation. Please explain your reasoning in complete sentences.

1. If x_{1}, x_{2}, \ldots is a Cauchy sequence of real numbers, is it necessarily true that $\left|x_{1}\right|,\left|x_{2}\right|, \ldots$ is a Cauchy sequence too? Give a proof or a counterexample, whichever is appropriate.

Solution. The statement is true. For suppose ε is a specified positive real number. If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence, then there exists a natural number N such that $\left|x_{n}-x_{m}\right|<\varepsilon$ when $n \geq N$ and $m \geq N$. By the triangle inequality,

$$
\left|\left|x_{n}\right|-\left|x_{m}\right|\right| \leq\left|x_{n}-x_{m}\right|
$$

so $\left|\left|x_{n}\right|-\left|x_{m}\right|\right|$ inherits the property of being less than ε when $n \geq N$ and $m \geq N$. Therefore $\left\{\left|x_{n}\right|\right\}_{n=1}^{\infty}$ is a Cauchy sequence.
2. (a) State the definition of what " $\lim _{x \rightarrow 0} f(x)=0$ " means.

Solution. To every positive real number ε there corresponds a positive real number δ such that $|f(x)|<\varepsilon$ when $0<|x|<\delta$.
(b) Use the definition to prove that $\lim _{x \rightarrow 0} e^{-1 / x^{2}}=0$.

Solution. Suppose ε is an arbitrary positive real number. Set δ equal to

$$
\frac{1}{\sqrt{\log \left(\frac{1+\varepsilon}{\varepsilon}\right)}} .
$$

If $|x|<\delta$, then

$$
x^{2}<\delta^{2}=\frac{1}{\log \left(\frac{1+\varepsilon}{\varepsilon}\right)}
$$

so if additionally $x \neq 0$, then

$$
-\frac{1}{x^{2}}<-\log \left(\frac{1+\varepsilon}{\varepsilon}\right)=\log \left(\frac{\varepsilon}{1+\varepsilon}\right)
$$

Math $3^{2}+20^{2} \quad$ Exam $2 \quad$ Spring $1^{3}+4^{3}+6^{3}+9^{3}+10^{3}$

Advanced Calculus I

and since the exponential function is increasing,

$$
e^{-1 / x^{2}}<\frac{\varepsilon}{1+\varepsilon}<\varepsilon .
$$

Thus the definition of limit is satisfied.

Remark Setting δ equal to

$$
\frac{1}{\sqrt{\log (1 / \varepsilon)}}
$$

almost works, except that $\log (1 / \varepsilon)$ is negative when $\varepsilon>1$. You could, however, assume without loss of generality that $\varepsilon<1$ (since making $|f(x)|$ less than a number smaller than ε certainly ensures that $|f(x)|$ is less than ε).
3. Evidently $2^{x}=x^{2}$ when $x=2$ and when $x=4$. Are there any negative values of the real number x for which $2^{x}=x^{2}$? Explain how you know. [You may assume that 2^{x} is an everywhere differentiable function of x.]

Solution. Set $f(x)$ equal to $2^{x}-x^{2}$. Then f is a continuous function, $f(0)=1$, and $f(-1)=\frac{1}{2}-1=-\frac{1}{2}$. By the intermediate-value theorem, there must be a value of x between -1 and 0 for which $f(x)=0$. This negative value of x has the property that $2^{x}=x^{2}$.
4. If $f(x)=\sin (x)$ for every real number x, is the function $f: \mathbf{R} \rightarrow \mathbf{R}$ uniformly continuous on R? Explain why or why not.

Solution. The function is uniformly continuous. One reason is that the derivative $f^{\prime}(x)$ equals $\cos (x)$, which is a bounded function. We covered a theorem stating that a function with a bounded derivative is necessarily a uniformly continuous function. (In the present context, you could reprove that theorem as follows: if x and y are two arbitrary real numbers, then by the mean-value theorem there is a point c between x and y such that $|\sin (x)-\sin (y)|=|\cos (c)||x-y| \leq|x-y|$. So δ can be taken equal to ε in the definition of uniform continuity.)
A second method is to invoke the theorem that a continuous function on a closed, bounded interval is automatically uniformly continuous.

Math $3^{2}+20^{2}$
Exam 2 Spring $1^{3}+4^{3}+6^{3}+9^{3}+10^{3}$

Advanced Calculus I

Although the domain in this problem is not bounded, the function $\sin (x)$ is periodic, so it essentially lives on a closed, bounded interval. Here are more details for this approach.

Fix a positive real number ε. By the indicated theorem, there is a positive δ, which may be taken to be less than π, with the property that if x and y are points of the interval $[0,3 \pi]$ such that $|x-y|<\delta$, then $|\sin (x)-\sin (y)|<\varepsilon$. Now if \tilde{x} and \tilde{y} are arbitrary real numbers such that $|\tilde{x}-\tilde{y}|<\delta$, then there are numbers x and y in the interval $[0,3 \pi]$ such that $|\tilde{x}-\tilde{y}|=|x-y|$ and $\sin (\tilde{x})=\sin (x)$ and $\sin (\tilde{y})=\sin (y)$. (Simply translate the numbers \tilde{x} and \tilde{y} along the number line by $2 \pi n$ for a suitable integer n to make the smaller of the two numbers lie in the interval $[0,2 \pi]$.) Then $|\sin (\tilde{x})-\sin (\tilde{y})|=|\sin (x)-\sin (y)|<\varepsilon$.
5. Suppose that

$$
f(x)= \begin{cases}x \cos (1 / x), & \text { when } x \neq 0 \\ 0, & \text { when } x=0\end{cases}
$$

Is the function f differentiable at the point where $x=0$? Explain why or why not.

Solution. The function is continuous at the point where $x=0$ by the sandwich theorem, but the function is not differentiable at the point where $x=0$. Indeed,

$$
\frac{f(x)-f(0)}{x-0}=\frac{x \cos (1 / x)-0}{x-0}=\cos (1 / x) \quad \text { when } x \neq 0 .
$$

The derivative $f^{\prime}(0)$ exists if and only if the preceding quantity has a limit as x approaches 0 . But we saw in class that $\cos (1 / x)$ does not have a limit as x approaches 0 . (Explicitly, if $x_{n}=(n \pi)^{-1}$, then $x_{n} \rightarrow 0$, but $\cos \left(x_{n}\right)=(-1)^{n}$, and $(-1)^{n}$ has no limit as $n \rightarrow \infty$.)

Remark The product rule and the chain rule imply that

$$
f^{\prime}(x)=\cos \left(\frac{1}{x}\right)+\frac{1}{x} \sin \left(\frac{1}{x}\right) \quad \text { when } x \neq 0
$$

Math $3^{2}+20^{2} \quad$ Exam $2 \quad$ Spring $1^{3}+4^{3}+6^{3}+9^{3}+10^{3}$ Advanced Calculus I
so evidently $\lim _{x \rightarrow 0} f^{\prime}(x)$ does not exist. This observation by itself shows only that the derivative is not continuous at 0 ; one cannot conclude without further analysis that $f^{\prime}(0)$ fails to exist. Indeed, you know from Example 4.8 on page 103 that there is a similar function whose derivative is discontinuous yet exists everywhere.
6. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is a differentiable function, and $\lim _{x \rightarrow \infty} f^{\prime}(x)=3$. Determine $\lim _{x \rightarrow \infty}(f(x+2)-f(x))$.

Solution. By the mean-value theorem, there is a point c_{x} between x and $x+2$ such that $f(x+2)-f(x)=f^{\prime}\left(c_{x}\right)((x+2)-x)=2 f^{\prime}\left(c_{x}\right)$. Now $c_{x} \rightarrow \infty$ when $x \rightarrow \infty$ (since $\left.c_{x}>x\right)$, so $f^{\prime}\left(c_{x}\right) \rightarrow 3$ when $x \rightarrow \infty$. Therefore $f(x+2)-f(x)=2 f^{\prime}\left(c_{x}\right) \rightarrow 6$ when $x \rightarrow \infty$.
7. Suppose $f(x)=\frac{2}{1+x}$ for every positive real number x, and let g denote the iterated composition $\underbrace{f \circ f \circ \cdots \circ f}_{409 \text { copies of } f}$. Determine the derivative $g^{\prime}(1)$.

Solution. Observe that $f(1)=1$. Consequently, by the chain rule, $(f \circ f)^{\prime}(1)=f^{\prime}(f(1)) f^{\prime}(1)=f^{\prime}(1)^{2}$. It follows by a straightforward induction argument that $g^{\prime}(1)=f^{\prime}(1)^{409}$. You know from elementary calculus (by the quotient rule, for example) that $f^{\prime}(1)=-1 / 2$. Therefore $g^{\prime}(1)=-1 / 2^{409}$.

Remark The large number 409 is a hint that there must be a way to solve the problem without computing an explicit formula for $g(x)$.

