Advanced Calculus I

A Definitions and examples

1. Continuity
(a) State the definition of " $f:(0,1) \rightarrow \mathbf{R}$ is continuous".

Solution. See Definition 3.19 on page 83.
(b) Give a concrete example of a continuous function.

Solution. Some examples are constant functions, polynomials, the sine function, the cosine function, and the exponential function.
(c) Give a concrete example of a function that is not continuous.

Solution. Step functions and the Dirichlet function are possible examples.
2. Differentiability
(a) State the definition of " $f:(0,1) \rightarrow \mathbf{R}$ is differentiable".

Solution. See Definitions 4.1 and 4.6 on pages 98 and 102.
(b) Give a concrete example of a function that is differentiable.

Solution. Some examples are constant functions, polynomials, the sine function, the cosine function, and the exponential function.
(c) Give a concrete example of a function that is not differentiable.

Solution. Some examples are the absolute-value function $|x|$ on the interval $(-1,1)$, the shifted function $\left|x-\frac{1}{2}\right|$ on the interval $(0,1)$, and the discontinuous functions from the previous problem.
3. Integrability
(a) State the definition of " $f:[0,1] \rightarrow \mathbf{R}$ is Riemann integrable".

Solution. See Definition 5.9 on page 134.

Advanced Calculus I

(b) Give a concrete example of a function that is Riemann integrable.

Solution. Constant functions, polynomials, the sine function, the cosine function, and the exponential function are some examples of integrable functions on bounded intervals.
(c) Give a concrete example of a function that is not Riemann integrable.

Solution. One example is the Dirichlet function. Another example is any unbounded function, say

$$
\begin{cases}1 / x, & x \neq 0 \\ 1, & x=0\end{cases}
$$

B Theorems and proofs

Here are some of the important theorems from the course:

- Bolzano-Weierstrass theorem
- Intermediate-value theorem
- Mean-value theorem
- Taylor's formula
- l'Hôpital's rule
- Fundamental theorem of calculus

4. Give careful statements of three of the indicated theorems.
(For a theorem that has several versions, state any one version.)
5. Prove one of the indicated theorems.
(For a theorem that has several versions, prove any one version.)
Solution. The indicated theorems (with proofs) are in the textbook as Theorem 2.26 on page 56, Theorem 3.29 on page 87 , Theorem 4.15 on page 111, Theorem 4.24 on page 117, Theorem 4.27 on page 120 , and Theorem 5.28 on page 152 .

Advanced Calculus I

C Problems

Solve two of the following four problems.
6. Prove that $\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}$ for every natural number n.

Solution. The proof is by induction on n. When $n=1$, both sides equal 1, so the basis step of the induction argument is valid.
Suppose, then, that the equation is known to hold for a certain natural number n. It follows by adding $(n+1)^{3}$ to both sides that

$$
\sum_{k=1}^{n+1} k^{3}=(n+1)^{3}+\frac{n^{2}(n+1)^{2}}{4}
$$

Routine algebra shows that the right-hand side simplifies as follows:

$$
\begin{aligned}
(n+1)^{3}+\frac{n^{2}(n+1)^{2}}{4} & =(n+1)^{2}\left[(n+1)+\frac{n^{2}}{4}\right] \\
& =\frac{(n+1)^{2}\left(n^{2}+4 n+4\right)}{4} \\
& =\frac{(n+1)^{2}(n+2)^{2}}{4}
\end{aligned}
$$

Consequently, if the indicated equation holds for a certain natural number n, then the equation holds for the successor number.
By induction, the equation holds for every natural number.
7. Prove that $\left\{n \sin \left(\frac{1}{n}\right)\right\}_{n=1}^{\infty}$ is a Cauchy sequence.

Solution. The indicated sequence is a sequence of real numbers, so an equivalent statement is that the sequence has a limit. You know from class or by l'Hôpital's rule that

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

Letting x approach 0 along the sequence $\{1 / n\}_{n=1}^{\infty}$ shows that

$$
\lim _{n \rightarrow \infty} \frac{\sin (1 / n)}{1 / n}=1, \quad \text { or } \quad \lim _{n \rightarrow \infty} n \sin (1 / n)=1
$$

Thus the indicated sequence not only converges but has limit 1 .

Advanced Calculus I

8. Define $f:(0, \infty) \rightarrow(0, \infty)$ by setting $f(x)$ equal to $x e^{x}$ for each positive real number x. Prove that f has an inverse function, and evaluate the derivative $\left(f^{-1}\right)^{\prime}(e)$.

Solution. Since $f^{\prime}(x)=x e^{x}+e^{x}>0$ when $x>0$, the function f is strictly increasing, hence one-to-one. Moreover, $\lim _{x \rightarrow \infty} f(x)=\infty$, and $\lim _{x \rightarrow 0} f(x)=0$. By the intermediate-value theorem, the range of the continuous function f is all of $(0, \infty)$. Being both one-to-one and onto, the function f has an inverse.
By inspection, $f(1)=e$, so the theorem about differentiating an inverse function shows that

$$
\left(f^{-1}\right)^{\prime}(e)=\frac{1}{f^{\prime}(1)}=\frac{1}{2 e} .
$$

9. Let a_{n} equal $\int_{1}^{n} \frac{\sin (x)}{\sqrt{x}} d x$ for each natural number n. Prove that $\lim _{n \rightarrow \infty} a_{n}$ exists.

Solution. The key idea is to integrate by parts:

$$
a_{n}=\frac{-\cos (n)}{\sqrt{n}}+\cos (1)-\frac{1}{2} \int_{1}^{n} \frac{\cos (x)}{x^{3 / 2}} d x
$$

Now $|-\cos (n) / \sqrt{n}| \leq 1 / \sqrt{n} \rightarrow 0$ as $n \rightarrow \infty$, so the first term on the right-hand side has a limit by the sandwich theorem. The second term is constant, so what remains to show is that

$$
\lim _{n \rightarrow \infty} \int_{1}^{n} \frac{\cos (x)}{x^{3 / 2}} d x \quad \text { exists, }
$$

or equivalently that

$$
\left\{\int_{1}^{n} \frac{\cos (x)}{x^{3 / 2}} d x\right\}_{n=1}^{\infty} \quad \text { is a Cauchy sequence. }
$$

If $m<n$, then

$$
\begin{aligned}
\left|\int_{1}^{n} \frac{\cos (x)}{x^{3 / 2}} d x-\int_{1}^{m} \frac{\cos (x)}{x^{3 / 2}} d x\right| & =\left|\int_{m}^{n} \frac{\cos (x)}{x^{3 / 2}} d x\right| \leq \int_{m}^{n}\left|\frac{\cos (x)}{x^{3 / 2}}\right| d x \\
& \leq \int_{m}^{n} \frac{1}{x^{3 / 2}} d x=2\left(\frac{1}{\sqrt{m}}-\frac{1}{\sqrt{n}}\right)
\end{aligned}
$$

Final Exam
 Advanced Calculus I

Spring 2010

If a positive ε is prescribed, then the right-hand side will certainly be less than ε when $m>4 / \varepsilon^{2}$. Consequently, the indicated sequence of integrals is a Cauchy sequence.

