## Advanced Calculus I

Instructions Please write your solutions on your own paper.
These problems should be treated as essay questions. A problem that says "give an example" or "determine" requires a supporting explanation. In all problems, you should explain your reasoning in complete sentences.

Students in Section 501 should answer questions 1-6 in Parts A and B.
Students in Section 200 (the honors section) should answer questions 1-3 in Part A and questions 7-9 in Part C.

## Part A, for both Section 200 and Section 501

1. The diagram below provides convincing evidence that there is exactly one solution in the real numbers to the equation $\cos (\pi x)=4 x$. But a picture is not a proof.


Your task is to supply a proof, as follows.
a) Apply the intermediate-value theorem to prove that there is at least one real number $x$ between 0 and 1 such that $\cos (\pi x)-4 x=0$.
b) Apply Rolle's theorem (or the mean-value theorem) to prove that there cannot be two distinct real numbers for which $\cos (\pi x)-4 x=0$.
2. Suppose

$$
f(x)= \begin{cases}\log (\cos (\sin (x))), & \text { when } x \neq 0 \\ 0, & \text { when } x=0\end{cases}
$$

Is the function $f$ continuous at the point where $x=0$ ? Explain why or why not. (You may assume that the logarithm function and the trigonometric functions are continuous on their natural domains.)

## Advanced Calculus I

3. Suppose $a$ is a positive real number, and

$$
f_{a}(x)= \begin{cases}\frac{\sin (x)-x \cos (x)}{|x|^{a}}, & \text { when } x \neq 0 \\ 0, & \text { when } x=0\end{cases}
$$

Show that $f_{a}$ is differentiable at 0 when $a \leq 2$.

## Part B, for Section 501 only

4. The following table has three missing entries: $f^{\prime}(1), g^{\prime}(1)$, and $g^{\prime}(2)$.

| $x$ | $f(x)$ | $g(x)$ | $f^{\prime}(x)$ | $g^{\prime}(x)$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 |  |  |
| 2 | 2 | 1 | 5 |  |

Determine the missing values if

$$
\begin{aligned}
& (f \circ g)^{\prime}(1)=0, \\
& (f \circ g)^{\prime}(2)=36, \\
& (g \circ f)^{\prime}(2)=45 .
\end{aligned}
$$

5. Give an example of a function $f:(0,1) \rightarrow \mathbb{R}$ that is increasing, convex, and not uniformly continuous.
6. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\lim _{x \rightarrow 0} f\left(x^{2}\right)$ exists but $\lim _{x \rightarrow 0} f(x)$ does not exist.

## Part C, for Section 200 only

7. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ for which there are infinitely many real numbers $a$ with the property that $\liminf _{x \rightarrow a-} f(x)>\limsup _{x \rightarrow a+} f(x)$ (in other words, the limit inferior on the left-hand side exceeds the limit superior on the right-hand side).
8. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ for which the four Dini derivates at the origin all have different values from each other.
9. Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex, and $f^{\prime}$ (the first derivative) exists everywhere, then $f^{\prime}$ is necessarily continuous.
Hint: Can a derivative ever have a jump discontinuity?
