Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

Students in Section 501 should answer questions 1-6 in Parts A and B.
Students in Section 200 should answer questions 1-3 in Part A and questions 7-9 in Part C.

Part A, for both Section 501 and Section 200

1. Give an example of a set E such that the supremum of E equals 5, but E does not have a maximum.
2. a) State the definition of what " $\lim _{n \rightarrow \infty} x_{n}=\infty$ " means.
b) Use the definition to prove that $\lim _{n \rightarrow \infty} \frac{n-5}{2}=\infty$.
3. If E is the set of positive irrational numbers less than $5 / 2$, then what is the set of interior points of E ? Explain.

Part B, for Section 501 only

4. The following items are named after famous Greek, Bohemian, German, and French mathematicians:

- the Archimedean property,
- the Bolzano-Weierstrass theorem,
- the Cauchy criterion for convergence.

Give a precise statement of one of these three items.
5. Consider the sequence whose nth term is

$$
\frac{(-1)^{5 n}+\cos (5 n)}{n+5}
$$

Prove that this sequence converges.
6. True or false: If E is a finite set (that is, a set having only a finite number of elements), then E is necessarily compact.
If the statement is true, then give a proof; if false, then give a counterexample.

Part C, for Section 200 only

7. Here are three famous results encountered in the course so far:

- the well-ordering property of the natural numbers,
- Cantor's theorem about uncountability,
- the Heine-Borel characterization of compact sets.

Give a precise statement of one of these three items.
8. Consider the following recursively defined sequence:

$$
x_{1}=2, \quad \text { and } \quad x_{n+1}=\sqrt{2+x_{n}^{2}} \quad \text { when } n \geq 1
$$

Prove that this sequence has no convergent subsequence.
9. True or false: A set E (a subset of \mathbb{R}) is bounded if and only if the closure of E is compact.
If the statement is true, then give a proof; if false, then give a counterexample.

