Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

Students in Section 501 should answer questions 1-6 in Parts A and B.
Students in Section 200 should answer questions 1-3 in Part A and questions 7-9 in Part C.

Part A, for both Section 501 and Section 200

1. Show that the function e^{-x} has exactly one fixed point. In other words, there is exactly one real number x with the property that $e^{-x}=x$.
2. Give an example of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is a one-to-one correspondence (in other words, has an inverse function) but is not differentiable.
3. Suppose $f(x)=\tan (\sin (\cos (x)))$. Is there a value of x for which $f^{\prime}(x)=0$? Explain why or why not.

Part B, for Section 501 only

4. Give an example of a strictly increasing, bounded, continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$.
5. Does the limit

$$
\lim _{x \rightarrow 0} \frac{\sin (x) \cos \left(x^{2}\right)}{|x|}
$$

exist? Explain why or why not.
6. The following table has two missing entries: $f^{\prime}(1)$ and $f^{\prime}(2)$.

x	$f(x)$	$f^{\prime}(x)$
1	2	
2	3	
3	4	5

Determine the two missing values if

$$
\begin{aligned}
(f \circ f)^{\prime}(1) & =6, \quad \text { and } \\
\left(f^{-1}\right)^{\prime}(3) & =7 .
\end{aligned}
$$

Remember that the notation f^{-1} means the inverse function, not the reciprocal function.

Part C, for Section 200 only

7. Give an example of a differentiable, convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ for which the second derivative $f^{\prime \prime}(0)$ does not exist.
8. Let $\lceil x\rceil$ denote the ceiling function: namely, the smallest integer greater than or equal to x. Discuss

$$
\limsup _{x \rightarrow \infty} \frac{\lceil x\rceil \cos (x)}{\sqrt{1+x^{2}}}
$$

9. Show by a counterexample that the analogue of the chain rule fails for right-hand derivatives: namely, there exist continuous functions f and g that do have right-hand derivatives, yet

$$
(f \circ g)_{+}^{\prime}(0) \neq f_{+}^{\prime}(g(0)) g_{+}^{\prime}(0)
$$

