## Final Examination

Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

Students in Section 501 should answer questions 1-6 in Parts A and B, and optionally the extra-credit question 10 in Part D.

Students in Section 200 should answer questions 1-3 in Part A and questions 7-9 in Part C, and optionally the extra-credit question 10 in Part D.

## Part A, for both Section 501 and Section 200

1. Consider a function $f$ defined as follows:

$$
f(x)=409 x-x^{409} \quad \text { when } \quad 0<x<2 .
$$

Does the function $f$ attain a maximum on the open interval $(0,2)$ ? What about a minimum? Why or why not?
2. Consider a sequence $\left\{x_{n}\right\}$ of real numbers defined recursively as follows:

$$
x_{1}=1, \quad \text { and } \quad x_{n+1}=\frac{409+x_{n}}{2} \quad \text { when } \quad n \geq 1
$$

Does $\lim _{n \rightarrow \infty} x_{n}$ exist? Explain why or why not.
3. Consider the following three properties that a function $f$ might or might not have:
(C) $f$ is continuous on the interval $[0,2]$.
(D) $f$ is differentiable on the interval $[0,2]$.
(I) $f$ is Riemann integrable on the interval [0,2].

There are six possible implications between these properties: $(\mathrm{C}) \Rightarrow(\mathrm{D}) ;(\mathrm{D}) \Rightarrow(\mathrm{C})$; $(\mathrm{C}) \Rightarrow(\mathrm{I}) ;(\mathrm{I}) \Rightarrow(\mathrm{C}) ;(\mathrm{D}) \Rightarrow(\mathrm{I}) ;(\mathrm{I}) \Rightarrow(\mathrm{D})$. Which implications are valid? Why? For the implications that are not valid, give counterexamples.

## Part B, for Section 501 only

4. State the following theorems:
a) l'Hôpital's rule (some version);
b) the fundamental theorem of calculus (relating derivatives and integrals);
c) some (other) theorem from this course that involves the concept of compactness.
5. Prove that $2^{n} \geq 2 n$ for every natural number $n$.

## Final Examination

6. Give an example of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\lim _{x \rightarrow \infty} f(x)=0$, yet $\lim _{x \rightarrow \infty} \int_{1}^{x} f(t) d t=\infty$.

## Part C, for Section 200 only

7. State the following theorems:
a) some theorem from this course named after a European mathematician whose name begins with the letter "C";
b) some (other) theorem from this course that involves the concept of a covering by open sets or by closed sets;
c) some (other) theorem from this course that involves the intermediate-value property (Darboux property).
8. Prove that $2^{n} \geq n^{2}$ for every natural number $n$ larger than 3 .
9. Give an example of a bounded function $f$ on the interval $[0,1]$ such that $\lim _{x \rightarrow 0+} f(x)$ does not exist, yet $\lim _{x \rightarrow 0+} \int_{x}^{1} f(t) d t$ does exist.

## Part D, optional extra-credit question for both Section 200 and Section 501

10. Write an essay on the following topic: What is the most important concept or principle or theorem from this course? Why?
