Example of making a mistake

$$
\begin{aligned}
0= & (1-1)+(1-1)+(1-1)+\cdots \\
& \quad \text { (regroup by associativity of addition) } \\
= & 1+(-1+1)+(-1+1)+\cdots \\
= & 1 .
\end{aligned}
$$

What went wrong?
Something is hiding in the \cdots. We need to make the limit concept precise.

Introductions

-Who are you?
-What do you do for fun?

- When will you graduate?
- Where are you from?
-Why are you studying mathematics?

What are the real numbers?

Examples: rational numbers like $5 / 3$ and $-34 / 7$. Also irrational numbers like $\sqrt{2}$ and π.
More generally, decimal expansions like 382.765
Abstractly, the real numbers are a complete, ordered field.

Fields

A field is a number system with two operations, called + and \times, that are commutative and associative. Multiplication distributes over addition. There is an additive identity element, called 0 . There is a multiplicative identity element, called 1 . Every element has an additive inverse. Every nonzero element has a multiplicative inverse. Also, $1 \neq 0$.

Some examples of fields

- the real numbers \mathbb{R}
- the rational numbers \mathbb{Q}
- the field with two elements $\{0,1\}$ with $1+1=0$

Some non-examples of fields

- the set of integers \mathbb{Z} (missing multiplicative inverses)
- the natural numbers $0,1,2, \ldots$, denoted \mathbb{N} (missing both additive inverses and multiplicative inverses)

Ordered fields

An ordered field has a distinguished subset P, called the positive elements, closed under addition and multiplication. Moreover, every nonzero element of the field either is in P or its additive inverses is in P.

Then saying that $a<b$ means that $b-a \in P$.

Some examples of ordered fields

- the real numbers
- the rational numbers

Some non-examples of ordered fields

- the field with two elements $\{0,1\}$.

Since $1+1=0$, the set of what you might think are positive elements fails to be closed under addition.

Assignment for next time

Exercises 1 and 2 on page 6 .

