Recap from last time

The real numbers are characterized by being a complete, ordered field.
Complete means that every non-empty subset that is bounded above has a least upper bound.
Supremum is a synonym for least upper bound. Infimum is a synonym for greatest lower bound. You can go back and forth between infimum and supremum by observing that $\inf (S)=-\sup (-S)$, where $-S$ means the set of negatives of all the elements of the set S.
If $\sup (S)$ is an element of the set S, you are allowed to write $\max (S)$. Similarly for inf and min.

A consequence of completeness

Theorem (Archimedean property of \mathbb{R})

If x and y are two arbitrary positive real numbers, then there exists a natural number n such that $n x>y$.

Proof.
Seeking a contradiction, suppose for some x and y no such n exists. That is, $n x \leq y$ for every positive integer n. Then dividing by the positive number x shows that $n \leq y / x$ for every positive integer n.
Since the natural numbers have an upper bound y / x, there is by completeness a least upper bound, say s. When n is a natural number, $n \leq s$; but $n+1$ is a natural number too, so $n+1 \leq s$. Add -1 to both sides to deduce that $n \leq s-1$ for every natural number n.
Then $s-1$ is an upper bound for the natural numbers that is smaller than the supposed least upper bound s. Contradiction.\square

Density of \mathbb{Q} in \mathbb{R}

If $x<y$, then there exists a rational number between x and y. Why?
By Archimedean property, there is some positive integer n such that $n(y-x)>1$. If we can show that the interval ($n x, n y$) contains some integer k, then $n x<k<n y$, so dividing by the positive integer n shows that $x<k / n<y$, so k / n is the required rational number between x and y.
The set of integers that are less than or equal to $n x$ is bounded above, so has a supremum, and this supremum is a maximum (is in the set); see A.4.10 in the Appendix. Call it m.
Then $n x<m+1$ by definition of m. Also $m \leq n x$, so $m+1 \leq n x+1<n x+n(y-x)=n y$. So $m+1$ is the required integer k.

Assignment to hand in next time

Exercise 2 on page 18 in Section 2.2: namely, show that

$$
\bigcap_{n=1}^{\infty}(0, y / n]=\varnothing
$$

for every positive real number y.

