Recap from last time

The real numbers are characterized by being a complete, ordered field.

Complete means that every non-empty subset that is bounded above has a least upper bound.

Supremum is a synonym for least upper bound.

Infimum is a synonym for greatest lower bound.

You can go back and forth between infimum and supremum by observing that $\inf(S) = -\sup(-S)$, where -S means the set of negatives of all the elements of the set S.

If $\sup(S)$ is an element of the set S, you are allowed to write $\max(S)$. Similarly for inf and min.

A consequence of completeness

Theorem (Archimedean property of \mathbb{R})

If x and y are two arbitrary positive real numbers, then there exists a natural number n such that nx > y.

Proof.

Seeking a contradiction, suppose for some x and y no such n exists. That is, $nx \le y$ for every positive integer n. Then dividing by the positive number x shows that $n \le y/x$ for every positive integer n.

Since the natural numbers have an upper bound y/x, there is by completeness a least upper bound, say *s*.

When *n* is a natural number, $n \le s$; but n + 1 is a natural number too, so $n + 1 \le s$. Add -1 to both sides to deduce that $n \le s - 1$ for every natural number *n*.

Then s - 1 is an upper bound for the natural numbers that is smaller than the supposed least upper bound s. Contradiction.

Density of ${\mathbb Q}$ in ${\mathbb R}$

If x < y, then there exists a rational number between x and y. Why?

By Archimedean property, there is some positive integer n such that n(y - x) > 1. If we can show that the interval (nx, ny) contains some integer k, then nx < k < ny, so dividing by the positive integer n shows that x < k/n < y, so k/n is the required rational number between x and y.

The set of integers that are less than or equal to nx is bounded above, so has a supremum, and this supremum is a maximum (is in the set); see A.4.10 in the Appendix. Call it m.

Then nx < m + 1 by definition of m. Also $m \le nx$, so

 $m+1 \le nx + 1 < nx + n(y - x) = ny$. So m+1 is the required integer k.

Assignment to hand in next time

Exercise 2 on page 18 in Section 2.2: namely, show that

$$\bigcap_{n=1}^{\infty} (0, y/n] = \emptyset$$

for every positive real number y.