Help

- My office hour is Monday, Wednesday, and Friday afternoons, 2:00-3:00, in Blocker 601L.
- The posted Help Session is Tuesday and Thursday evenings, 7:30-10:00, in Blocker 121.

The greatest-integer function

The proof from last time shows that if x is an arbitrary real number, then there is a unique integer n such that $n \leq x<n+1$. This integer is denoted either [x] or $\lfloor x\rfloor$ and the function is called either the greatest-integer function or the floor function.
The least integer greater than or equal to x is the ceiling function, denoted $\lceil x\rceil$.

Distance in the real numbers

Absolute value $|x|= \begin{cases}x, & \text { if } x \geq 0 \\ -x, & \text { if } x<0 .\end{cases}$
Geometrically, $|x|$ represents the distance from x to 0 , and $|x-y|$ represents the distance from x to y.
Key properties of absolute value:

- $|x| \geq 0$ for every x, and $|x|=0$ if and only if $x=0$.
- $|x y|=|x||y|$ for every x and y (multiplicative property).
- $|x+y| \leq|x|+|y|$ (triangle inequality).

Example: Solve $|2 x-3|<1$.
Solution: Equivalent statement is $-1<2 x-3<1$, so $1<x<2$.

Square root function

Theorem
Every positive real number has a square root. More precisely, if c is a positive real number, then there exists one and only one positive real number x such that $x^{2}=c$.

Lemma
If x and y are positive, then $y^{2} \geq x^{2}$ if and only if $y \geq x$.
Proof.
Axioms for ordered fields imply that $y^{2} \geq x^{2}$ if and only if $y^{2}-x^{2} \geq 0$, equivalently, $(y+x)(y-x) \geq 0$. In an ordered field, inequalities are preserved by multiplying or dividing by a positive quantity, so equivalent is $y-x \geq 0$, that is, $y \geq x$.

Proof of theorem

Let S denote the set $\left\{x \in \mathbb{R}: x\right.$ is positive and $\left.x^{2} \geq c\right\}$.
Is S non-empty? Claim: $c+1$ is an element of S, because
$(c+1)^{2}=c^{2}+2 c+1>2 c>c$. So the set S is nonempty, and S is bounded below by 0 . Therefore S has a greatest lower bound, say g, by the completeness axiom for \mathbb{R}.
The goal is to show that $g^{2}=c$. The plan is to show that a contradiction arises if $g^{2}<c$, and a different contradiction arises if $g^{2}>c$. The law of trichotomy (axiom O_{3} on page 4) then yields the goal.
To be continued

Assignment to hand in next time

- Exercise 2 on page 14 in Section 1.4.
- Exercise 3 on page 20 in Section 2.4.

