Existence of square roots

Theorem

Every positive real number has a square root. More precisely, if c is a positive real number, then there exists one and only one positive real number x such that $x^2 = c$.

Proof.

Say $S = \{x \in \mathbb{R} : x \text{ is positive and } x^2 \ge c\}$, and $g = \inf(S)$. The goal is to show $g^2 = c$. The plan is to show that if $g^2 < c$, a contradiction arises; and if $g^2 > c$, a contradiction arises.

Suppose $g^2 < c$. What contradiction arises?

The Archimedean property implies the existence of a positive integer *n* for which $\frac{2g+1}{n} < c - g^2$. [How did I know to write this inequality? I worked out a side calculation.] Then

$$\left(g+rac{1}{n}
ight)^2=g^2+rac{2}{n}g+rac{1}{n^2}\leq g^2+rac{2}{n}g+rac{1}{n}< g^2+(c-g^2)=c.$$

Now if $x \in S$, then $x^2 \ge c$, so the preceding inequality implies that $x^2 \ge (g + \frac{1}{n})^2$. By the lemma from last time, $x \ge g + \frac{1}{n}$. Therefore $g + \frac{1}{n}$ is a lower bound for the set *S*, a greater lower bound than *g*. Contradiction. Suppose $g^2 > c$. What contradiction arises?

By the Archimedean principle, there is a positive integer n such that g > 1/n and also

$$g^2-c > \frac{2}{n}g > \frac{2}{n}g - \frac{1}{n^2}.$$

Therefore $(g - \frac{1}{n})^2 = g^2 - \frac{2}{n}g + \frac{1}{n^2} > c$, so the positive number $g - \frac{1}{n}$ is an element of the set *S*, contradicting that *g* is a lower bound for *S*.

Conclusion of the proof

By the trichotomy law, it must be that $g^2 = c$. Accordingly, the existence of square roots is proved.

What about uniqueness? If $g_1^2 = c$ and $g_2^2 = c$, then

$$0 = g_1^2 - g_2^2 = (g_1 - g_2)(g_1 + g_2).$$

Dividing by the positive quantity $g_1 + g_2$ shows that $0 = g_1 - g_2$, that is, $g_1 = g_2$.

Introduction to sequences

Nobody is in doubt that
$$\lim_{n\to\infty}\frac{1}{n}=0.$$

But what about

$$\lim_{n\to\infty}\frac{n!\,e^n}{n^{n+\frac{1}{2}}}=\sqrt{2\pi}$$

(Stirling's formula).

What is a sequence?

Examples:

- $(-1)^n$, where *n* represents a positive integer.
- ▶ 3, 1, 4, 1, 5, 9, 2, 6, 5, ... (digits of π).
- ▶ 1, 2, 3, ... (positive integers)
- ▶ 3, 3, 3, ... (a constant sequence)

A *sequence* is a list, and a *series* is the sum of the elements of a list.

A sequence is a function whose domain is the set of natural numbers.

How to denote a sequence? You could write f(n) or f_n or (f_n) or $\{f_n\}$ or $(x_n)_{n\geq 1}$.

Special types of sequences of real numbers

- A sequence (x_n) is bounded above if there exists a real number b such that x_n ≤ b for every natural number n.
- A sequence (x_n) is not bounded above if for every real number b there exists a natural number n such that x_n > b.

to be continued ...

Assignment to turn in next time

- ► Exercise 1 on page 29. [Bijective means one-to-one correspondence: see page 226 in the Appendix.]
- ► Exercise 1 on pages 31–32.