Existence of square roots

Theorem
Every positive real number has a square root. More precisely, if c is a positive real number, then there exists one and only one positive real number x such that $x^{2}=c$.

Proof.
Say $S=\left\{x \in \mathbb{R}: x\right.$ is positive and $\left.x^{2} \geq c\right\}$, and $g=\inf (S)$. The goal is to show $g^{2}=c$.
The plan is to show that if $g^{2}<c$, a contradiction arises; and if $g^{2}>c$, a contradiction arises.

Suppose $g^{2}<c$. What contradiction arises?

The Archimedean property implies the existence of a positive integer n for which $\frac{2 g+1}{n}<c-g^{2}$.
[How did I know to write this inequality? I worked out a side calculation.]
Then
$\left(g+\frac{1}{n}\right)^{2}=g^{2}+\frac{2}{n} g+\frac{1}{n^{2}} \leq g^{2}+\frac{2}{n} g+\frac{1}{n}<g^{2}+\left(c-g^{2}\right)=c$.
Now if $x \in S$, then $x^{2} \geq c$, so the preceding inequality implies that $x^{2} \geq\left(g+\frac{1}{n}\right)^{2}$. By the lemma from last time, $x \geq g+\frac{1}{n}$.
Therefore $g+\frac{1}{n}$ is a lower bound for the set S, a greater lower bound than g. Contradiction.

Suppose $g^{2}>c$. What contradiction arises?

By the Archimedean principle, there is a positive integer n such that $g>1 / n$ and also

$$
g^{2}-c>\frac{2}{n} g>\frac{2}{n} g-\frac{1}{n^{2}} .
$$

Therefore $\left(g-\frac{1}{n}\right)^{2}=g^{2}-\frac{2}{n} g+\frac{1}{n^{2}}>c$, so the positive number $g-\frac{1}{n}$ is an element of the set S, contradicting that g is a lower bound for S.

Conclusion of the proof

By the trichotomy law, it must be that $g^{2}=c$. Accordingly, the existence of square roots is proved.

What about uniqueness? If $g_{1}^{2}=c$ and $g_{2}^{2}=c$, then

$$
0=g_{1}^{2}-g_{2}^{2}=\left(g_{1}-g_{2}\right)\left(g_{1}+g_{2}\right)
$$

Dividing by the positive quantity $g_{1}+g_{2}$ shows that $0=g_{1}-g_{2}$, that is, $g_{1}=g_{2}$.

Introduction to sequences

Nobody is in doubt that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
But what about

$$
\lim _{n \rightarrow \infty} \frac{n!e^{n}}{n^{n+\frac{1}{2}}}=\sqrt{2 \pi}
$$

(Stirling's formula).

What is a sequence?

Examples:

- $(-1)^{n}$, where n represents a positive integer.
- $3,1,4,1,5,9,2,6,5, \ldots$ (digits of π).
- $1,2,3, \ldots$ (positive integers)
- $3,3,3, \ldots$ (a constant sequence)

A sequence is a list, and a series is the sum of the elements of a list.
A sequence is a function whose domain is the set of natural numbers.
How to denote a sequence? You could write $f(n)$ or f_{n} or $\left(f_{n}\right)$ or $\left\{f_{n}\right\}$ or $\left(x_{n}\right)_{n \geq 1}$.

Special types of sequences of real numbers

- A sequence $\left(x_{n}\right)$ is bounded above if there exists a real number b such that $x_{n} \leq b$ for every natural number n.
- A sequence $\left(x_{n}\right)$ is not bounded above if for every real number b there exists a natural number n such that $x_{n}>b$.
to be continued ...

Assignment to turn in next time

- Exercise 1 on page 29. [Bijective means one-to-one correspondence: see page 226 in the Appendix.]
- Exercise 1 on pages 31-32.

