Some examples of sequences of real numbers

1. $(\cos (n \pi))_{n \geq 0}$
2. $\left(n^{2}\right)_{n \geq 0}$
3. $(1 / n)_{n \geq 1}$

Which of these examples is/are bounded above?
Sequences 1 and 3 are bounded above, with supremum equal to 1 . bounded below?
Sequences 2 and 3 have 0 as greatest lower bound; sequence 1 has
-1 as greatest lower bound.
bounded?
Sequences 1 and 3.
increasing?
Sequence 2 is strictly increasing. decreasing?
Sequence 3 is strictly decreasing.
What about the constant sequence $2,2,2, \ldots$?
This sequence is both (weakly) increasing and (weakly) decreasing.

Montonic means either increasing or decreasing. Examples 2 and 3 are monotonic. A constant sequence is monotonic.

Terminology: ultimately, frequently

A sequence $\left(x_{n}\right)$ is ultimately (or eventually) in a set S if all but a finite number of terms are elements of S. In symbols: $\exists N \in \mathbb{N}$ such that $x_{n} \in S$ when $n \geq N$.
Which of the examples is/are ultimately positive?
Sequence 1 is not, but sequences 2 and 3 are ultimately positive.
A sequence (x_{n}) is frequently (or infinitely often) in a set S if $\forall N \exists n>N$ such that $x_{n} \in S$.
Which of the examples is/are frequently positive?
All three are frequently positive. Sequence 1 is also frequently negative.
Equivalences:

- not frequently in $S \Longleftrightarrow$ ultimately not in S
- not ultimately in $S \Longleftrightarrow$ frequently not in S

Null sequences in the real numbers

A sequence $\left(x_{n}\right)$ is null if for every open interval containing 0 , the sequence is ultimately in that interval.
In symbols: $\forall \varepsilon>0 \exists N$ such that $\left|x_{n}\right|<\varepsilon$ when $n \geq N$.
Negation: $\left(x_{n}\right)$ is not a null sequence means, in symbols, $\exists \varepsilon>0$ $\forall N \exists n \geq N$ such that $\left|x_{n}\right| \geq \varepsilon$.

Assignment to hand in next time

- Exercise 4 on page 34 in Section 3.1.
- Exercise 4 on page 39 in Section 3.3.

