
Null sequences and limits

Recap: A sequence (xn) is a null sequence if for every open interval
containing 0, the sequence is ultimately in that interval.
In symbols: ∀ε > 0 ∃N such that |xn| < ε when n ≥ N.

Definition
A sequence (xn)n≥1 of real numbers converges to a limit L if the
sequence (xn − L)n≥1 is a null sequence.

Notation: lim
n→∞

xn = L, or simply xn → L.

Example:
1

n
→ 0. Why? Given a positive ε, could take the cut-off

N to be
1

ε
or

⌈
1

ε

⌉
.

Nonexample: The sequence (n) fails to converge to any limit, that
is, there is no number L for which (n − L) is a null sequence.



Necessary condition for convergence

A convergent sequence must be bounded.
Indeed, if xn → L, then taking ε equal to 2 (for instance) in the
definition of limit shows that there exists some N such that if
n ≥ N, then |xn − L| < 2, or −2 < xn − L < 2, or
L− 2 < xn < L + 2.
An upper bound for all the terms of the sequence is
max{x1, x2, . . . , xN , L + 2}.
Similarly, a lower bound for the sequence is
min{x1, x2, . . . , xN , L− 2}.
Example: (sin(nπ/2)) is bounded between −1 and 1 but fails to
converge.
Boundedness is a necessary but not sufficient condition for
convergence.



Bounded monotonic sequences of real numbers converge

Theorem
If a sequence of real numbers is (i) increasing and (ii) bounded
above, then the sequence converges.
The limit is the supremum of the sequence.

Proof.
Suppose (xn) is a sequence satisfying the hypotheses, and
L denotes the supremum. Let ε be an arbitrary positive number.
The number L− ε is smaller than L, hence is not an upper bound
for the sequence, so there is some natural number N for which
L− ε < xN ≤ L.
Since the sequence is increasing, if n > N, then xn ≥ xN . Therefore
L− ε < xn ≤ L when n ≥ N, that is, |xn − L| < ε when n ≥ N.



Example

Suppose x1 = 1 and xn+1 =
√

2xn + 3 when n is a positive integer.
Discuss convergence.

First claim: the sequence is bounded above by 3.
Proof by induction. Evidently x1 < 3, so the basis step holds.
Induction step. Suppose xk ≤ 3 for a certain positive integer. The
goal is to deduce that xk+1 ≤ 3. By the recursive definition,
xk+1 =

√
2xk + 3 ≤

√
2 · 3 + 3 =

√
9 = 3. By induction, all terms of

the sequence are less than or equal to 3.
Second claim: the sequence is increasing. Indeed,
xn+1 =

√
2xn + 3 ≥

√
2xn + xn =

√
3xn ≥

√
xn · xn = xn (because

3 ≥ xn). Since this inequality holds for a general n, the sequence is
increasing.
By the previous theorem, this sequence converges (and the value of
the limit is least upper bound).



Assignment to hand in next time

Exercise 10 on page 43.


