Interaction of limits with operations on \mathbb{R}

Theorem 3.4.8 says that limits are compatible with the field operations and with the order relation \leq.
Example: The strict order relation $<$ is not necessarily preserved by taking limits. If $a_{n}=1-\frac{1}{n}$ and $b_{n}=1+\frac{1}{n}$, then $a_{n}<b_{n}$ (strict inequality) for every n, but $\lim _{n \rightarrow \infty} a_{n}=1=\lim _{n \rightarrow \infty} b_{n}$.

Remark on the assignment

Using the definition of limit, we need to address the inequality $\frac{n!}{n^{n}}<\varepsilon$. How big must n be to make such an inequality hold?

$$
\frac{n!}{n^{n}}=\frac{1}{n} \cdot \frac{2}{n} \cdots \frac{n}{n} \leq \frac{1}{n}
$$

So if N is chosen to be $1 / \varepsilon$, then if $n \geq N$, we can deduce that $1 / n \leq \varepsilon$, so $0 \leq n!/ n^{n} \leq \varepsilon$ too.

Sandwich theorem (squeeze theorem)

Theorem
Suppose $x_{n} \leq y_{n} \leq z_{n}$ for every n. If $x_{n} \rightarrow L$ and $z_{n} \rightarrow L$ (the same limit L), then $y_{n} \rightarrow L$. (The limit exists and equals L.)

Proof.
By hypothesis, $\left(x_{n}-L\right)$ is a null sequence, and $\left(z_{n}-L\right)$ is a null sequence, and $x_{n}-L \leq y_{n}-L \leq z_{n}-L$ for every n. An interval that contains the numbers $x_{n}-L$ and $z_{n}-L$ contains all the numbers in between, hence contains the number $y_{n}-L$. Then the definition of null sequence implies that $\left(y_{n}-L\right)$ is a null sequence too.

Subsequences

Example: $x_{n}=(-1)^{n}+\frac{1}{n}$
$x_{2 n} \rightarrow 1$ and $x_{2 n+1} \rightarrow-1$, so the sequence does not have a limit, but there are two subsequences that have limits.
The largest limit of any convergent subsequence of a sequence $\left(x_{n}\right)$ is called the limit superior, abbreviated $\lim \sup _{n \rightarrow \infty} x_{n}$. In the example above, $\lim \sup x_{n}=1$.
The smallest limit of any convergent subsequence is the limit inferior, abbreviated liminf. In the example, $\lim \inf x_{n}=-1$.

Assignment to hand in next time

Exercise 7 on page 55 in Section 3.7.

