Bolzano-Weierstrass theorem

Theorem
Every bounded sequence of real numbers has a convergent subsequence.

Proof by repeated bisection.
By hypothesis, all terms of the sequence $\left(s_{n}\right)$ lie in some interval $[a, b]$. Bisect the interval. The sequence is frequently in either the right half or the left half (or both). Pick an appropriate half, call it [a_{1}, b_{1}]. Let the first term of the subsequence, $s_{n_{1}}$, be the first term of the whole sequence that lies in $\left[a_{1}, b_{1}\right]$.
Iterate. Bisect $\left[a_{1}, b_{1}\right]$ and pick a half, $\left[a_{2}, b_{2}\right]$, that contains infinitely many terms of the original sequence. Let $s_{n_{2}}$ be the first term of the original sequence that lies in $\left[a_{2}, b_{2}\right]$ and for which the index n_{2} is greater than n_{1}. And so on.

Proof continued

Why does the subsequence converge?
The intervals $\left[a_{n}, b_{n}\right]$ are nested: namely, the left-hand endpoints a_{n} are weakly increasing, and the right-hand endpoints b_{n} are a weakly decreasing sequence. These two monotonic sequences are both bounded (namely, they are inside the original interval $[a, b]$), so a_{n} converges to something and b_{n} converges to something. Observe that $b_{n}-a_{n}=(b-a) / 2^{n}$. Therefore (by the squeeze theorem, for instance), the limits of the left-hand endpoints a_{n} and the right-hand endpoints b_{n} must be equal.
By construction $a_{n_{k}} \leq s_{n_{k}} \leq b_{n_{k}}$ for each k. By the squeeze theorem, the subsequence $s_{n_{k}}$ also converges to the same limit as the endpoints of the constructed intervals.

Cantor's nested-interval theorem

If $\left[a_{n}, b_{n}\right.$] is a sequence of nested closed intervals, then there is a point contained in all of the intervals, that is, $\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \neq \varnothing$. Moreover, if $b_{n}-a_{n} \rightarrow 0$, then there is exactly one point in the intersection.

Remark: It is important for the intervals to be closed. Example: $\bigcap_{n}(0,1 / n)=\varnothing$.

Cauchy sequences

A sequence $\left(x_{n}\right)$ of real numbers converges if and only if for every positive ε, there exists N such that $\left|x_{n}-x_{m}\right|<\varepsilon$ whenever $n \geq N$ and $m \geq N$.

