Reminder

Exam 1 on Chapters 1–3 takes place in class on Thursday, February 23.

Please bring your own paper to work on.

Properties of the real numbers

- \blacktriangleright \mathbb{R} is a complete ordered field.
- Archimedean property: \mathbb{N} is not bounded above in \mathbb{R} .
- \mathbb{Q} is dense in \mathbb{R} .

Sequences

- Null sequence
- Convergent sequence
- Cauchy sequence

In $\mathbb R$, convergent sequences and Cauchy sequences are the same. In $\mathbb Q$, which lacks completeness, convergent sequences are Cauchy sequences, but Cauchy sequences need not converge to an element of $\mathbb Q.$

Convergence theorems

- Monotone convergence
- Squeeze theorem
- Cantor's nested interval theorem

Subsequences

- Bolzano–Weierstrass theorem
- ► lim sup and lim inf. lim x_n exists precisely when lim sup x_n = lim inf x_n.
- ► A property holds *frequently* precisely when the property holds for some subsequence.
- A property holds *ultimately* precisely when the negation does not hold frequently.

What should $\lim_{n\to\infty} x_n = \infty$ mean? For every *N*, the sequence is ultimately greater than *N*. $\forall N \exists C$ such that $x_n > N$ when $n \ge C$. For a sequence of sets (A_n) , define the lim sup to be

$$\bigcap_{n=1}^{\infty} \left(\bigcup_{k\geq n} A_k\right)$$

x is this intersection if for every n,

$$x \in \bigcup_{k \ge n} A_k$$

which happens if there exists some k greater than or equal to n for which $x \in A_k$. That is, x is frequently in A_n .