Continuous functions

Suppose $c \in E \subseteq \mathbb{R}$, and $f: E \rightarrow \mathbb{R}$ is a function. Then f is continuous at the point c when any of the following three equivalent conditions holds.

1. For every sequence $\left(x_{n}\right)$ in E that converges to c, the image sequence $\left(f\left(x_{n}\right)\right)$ converges to $f(c)$.
2. For every positive ε, there exists a positive δ such that $|f(x)-f(c)|<\varepsilon$ whenever $|x-c|<\delta$ and $x \in E$; in symbols, $\forall \varepsilon>0 \exists \delta>0$ such that $\forall x \in E|x-c|<\delta \Longrightarrow$ $|f(x)-f(c)|<\varepsilon$.
Negation: $\exists \varepsilon>0$ such that $\forall \delta>0 \exists x \in E$ for which $|x-c|<\delta$ but $|f(x)-f(c)| \geq \varepsilon$.
3. For every neighborhood V of $f(c)$, the inverse image $f^{-1}(V)$, that is, $\{x \in E: f(x) \in V\}$, is a neighborhood of c.

Example

Suppose $E=\mathbb{R}^{+}, f(x)=1 / x$, and $c=2$.
Why is f continuous at 2?
If $\left(x_{n}\right)$ is an arbitrary sequence of positive real numbers, and if $x_{n} \rightarrow 2$, then by known properties of limits of sequences,

$$
\frac{1}{x_{n}} \rightarrow \frac{1}{2}
$$

so $f\left(x_{n}\right) \rightarrow f(c)$. Thus the first definition of continuity is met.

Example continued

Check continuity of $1 / x$ at 2 using the second definition.
Suppose ε is an arbitrary positive number.
Goal: find a positive δ such that

$$
\left|\frac{1}{x}-\frac{1}{2}\right|<\varepsilon \quad \text { when }|x-2|<\delta \quad \text { and } x>0
$$

Side calculation: $\frac{1}{x}-\frac{1}{2}=\frac{2-x}{2 x}$. One way to guarantee that the fraction is close to zero is to make the numerator close to zero and the denominator stay away from zero.
If $|x-2|<1$ (for example), then $-1<x-2<1$, so in particular, $1<x$, hence $\left|\frac{2-x}{2 x}\right| \leq \frac{|x-2|}{2}$.
Now take δ to be $\min \{1, \varepsilon\}$. If $|x-2|<\delta$, then

$$
\left|\frac{1}{x}-\frac{1}{2}\right| \leq \frac{|x-2|}{2} \leq \frac{\varepsilon}{2}<\varepsilon
$$

Two big theorems

Theorem (Intermediate-value theorem)
If I is an interval, and $f: I \rightarrow \mathbb{R}$ is continuous at every point of I, then the image $f(I)$ is an interval.

Theorem (Extreme-value theorem) If K is a compact subset of \mathbb{R}, and $f: K \rightarrow \mathbb{R}$ is continuous at every point of K, then f attains a maximum value on K (and also attains a minimum value).

