Continuous functions

Suppose $c \in E \subseteq \mathbb{R}$, and $f : E \to \mathbb{R}$ is a function. Then f is *continuous* at the point c when any of the following three equivalent conditions holds.

- 1. For every sequence (x_n) in E that converges to c, the image sequence $(f(x_n))$ converges to f(c).
- 2. For every positive ε , there exists a positive δ such that $|f(x) - f(c)| < \varepsilon$ whenever $|x - c| < \delta$ and $x \in E$; in symbols, $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $\forall x \in E \ |x - c| < \delta \implies$ $|f(x) - f(c)| < \varepsilon$. Negation: $\exists \varepsilon > 0$ such that $\forall \delta > 0 \ \exists x \in E$ for which $|x - c| < \delta$ but $|f(x) - f(c)| \ge \varepsilon$.
- 3. For every neighborhood V of f(c), the inverse image $f^{-1}(V)$, that is, $\{x \in E : f(x) \in V\}$, is a neighborhood of c.

Example

Suppose $E = \mathbb{R}^+$, f(x) = 1/x, and c = 2.

Why is f continuous at 2? If (x_n) is an arbitrary sequence of positive real numbers, and if $x_n \rightarrow 2$, then by known properties of limits of sequences,

$$\frac{1}{x_n} \to \frac{1}{2},$$

so $f(x_n) \rightarrow f(c)$. Thus the first definition of continuity is met.

Example continued

Check continuity of 1/x at 2 using the second definition. Suppose ε is an arbitrary positive number. Goal: find a positive δ such that

$$\left|\frac{1}{x}-\frac{1}{2}\right|<\varepsilon$$
 when $|x-2|<\delta$ and $x>0$.

Side calculation: $\frac{1}{x} - \frac{1}{2} = \frac{2-x}{2x}$. One way to guarantee that the fraction is close to zero is to make the numerator close to zero and the denominator stay away from zero. If |x - 2| < 1 (for example), then -1 < x - 2 < 1, so in particular, 1 < x, hence $|\frac{2-x}{2x}| < \frac{|x-2|}{2}$.

Now take δ to be min $\{1, \varepsilon\}$. If $|x - 2| < \delta$, then

$$\left|\frac{1}{x} - \frac{1}{2}\right| \le \frac{|x-2|}{2} \le \frac{\varepsilon}{2} < \varepsilon.$$

Two big theorems

Theorem (Intermediate-value theorem)

If I is an interval, and $f: I \to \mathbb{R}$ is continuous at every point of I, then the image f(I) is an interval.

Theorem (Extreme-value theorem)

If K is a compact subset of \mathbb{R} , and $f: K \to \mathbb{R}$ is continuous at every point of K, then f attains a maximum value on K (and also attains a minimum value).