Coming attractions

- Limits of functions
- Continuous functions
- Theorems about continuous functions on intervals
- Differentiable functions
- Theorems about differentiable functions on intervals
- Riemann integration

Limits of functions

Suppose $f: E \rightarrow \mathbb{R}$, and c is a limit point of the domain E (not necessarily a point of E); that is, there is a sequence $\left(x_{n}\right)$ of points of $E \backslash\{c\}$ that converges to c.

Definition
To say that $\lim _{x \rightarrow c} f(x)=L$ means

- for every sequence $\left(x_{n}\right)$ in $E \backslash\{c\}$, if $x_{n} \rightarrow c$ then $f\left(x_{n}\right) \rightarrow L$; equivalently,
- for every positive ε there exists a positive δ such that if

$$
x \in E \backslash\{c\} \text { and }|x-c|<\delta \text { then }|f(x)-L|<\varepsilon
$$

Often E is an interval (open or closed) and c is either an interior point of the interval or an endpoint of the interval.

Example

Suppose E is the open interval $(0,1)$ and $f: E \rightarrow \mathbb{R}$ is defined as follows: $f(x)=\sin (1 / x)$ for x in E.

What can you say about $\lim _{x \rightarrow 0} f(x)$?
Since $f(x)=1$ when $x=2 / \pi$ and $2 /(5 \pi)$ and $2 /(9 \pi)$ and so on, and this sequence $(2 /((1+4 n) \pi))$ has limit 0 ; but $f(2 /(3 \pi))=-1$ and generally $f(2 /((3+4 n) \pi))=-1$; so the function cannot have a limit at 0 , for there are different limits along different sequences.

Another example of failure

$E=(0,1), f(x)=1 / x$.
$\lim _{x \rightarrow 0} f(x)$ fails to exist because $f\left(x_{n}\right)$ is unbounded for every sequence (x_{n}) that approaches 0 .

A fancier example

Suppose E is the set of positive rational numbers, and $f: E \rightarrow \mathbb{R}$ is defined as follows: $f(m / n)=m / n^{2}$ when m and n are positive integers with no common factor.

What can you say about $\lim _{x \rightarrow 1} f(x)$?
If $x_{n} \rightarrow 1$ but $x_{n} \neq 1$, then the denominator of x_{n} is growing without bound, and $f\left(x_{n}\right)$ is approximately the reciprocal of the denominator of x_{n}, so $f\left(x_{n}\right) \rightarrow 0$ for every such sequence.
So $\lim _{x \rightarrow 1} f(x)=0$ even though $f(1)=1$.
How about $\lim _{x \rightarrow \pi} f(x)$?
Limit is zero for essentially the same reason.

Continuous functions

Suppose $f: E \rightarrow \mathbb{R}$, and c is a point of the domain E.
Definition
To say that f is continuous at c means

- for every sequence $\left(x_{n}\right)$ in E, if $x_{n} \rightarrow c$ then $f\left(x_{n}\right) \rightarrow f(c)$; equivalently,
- $\lim _{x \rightarrow c} f(x)$ exists and equals $f(c)$; equivalently,
- for every positive ε there exists a positive δ such that if $x \in E$ and $|x-c|<\delta$ then $|f(x)-f(c)|<\varepsilon$.

