Properties of continuous functions

Are the continuous functions $f: \mathbb{R} \to \mathbb{R}$

► a field?

No: $\sin(x)$ is continuous, but the reciprocal $1/\sin(x)$ is not continuous.

- a vector space?
 Yes.
- ► closed under taking the maximum? In other words, if f(x) and g(x) are continuous functions, is max{f(x), g(x)} continuous too? Yes.

Proof for continuity of maximum at a point c

Suppose ε is a prescribed positive number. By hypothesis, there is a positive δ such that $|x - c| < \delta$ implies $|f(x) - f(c)| < \varepsilon$ and $|g(x) - g(c)| < \varepsilon$, or, equivalently,

$$-arepsilon < f(x) - f(c) < arepsilon \quad and \quad -arepsilon < g(x) - g(c) < arepsilon$$

or

$$f(c) - \varepsilon < f(x) < f(c) + \varepsilon$$
 and $g(c) - \varepsilon < g(x) < g(c) + \varepsilon$.

But $f(c) + \varepsilon \le \max\{f(c), g(c)\} + \varepsilon$ and $g(c) + \varepsilon \le \max\{f(c), g(c)\} + \varepsilon$. Combining these inequalities shows that $\max\{f(x), g(x)\} \le \max\{f(c), g(c)\} + \varepsilon$. A similar argument shows that $\max\{f(c), g(c)\} - \varepsilon \le \max\{f(x), g(x)\}$. So we are done. Continuity of f at c means: $\forall \varepsilon > 0 \ \exists \delta > 0 \text{ such that } |x - c| < \delta \implies |f(x) - f(c)| < \varepsilon.$

What do each of the following mangled properties mean?

1. $\exists \varepsilon > 0 \ \forall \delta > 0 \ |x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$. 2. $\forall \varepsilon > 0 \ \forall \delta > 0 \ |x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$. 3. $\exists \varepsilon > 0 \ \exists \delta > 0$ such that $|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$. 4. $\forall \varepsilon < 0 \ \exists \delta < 0$ such that $|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$.