Properties of continuous functions

Are the continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$

- a field?

No: $\sin (x)$ is continuous, but the reciprocal $1 / \sin (x)$ is not continuous.

- a vector space?

Yes.

- closed under taking the maximum? In other words, if $f(x)$ and $g(x)$ are continuous functions, is $\max \{f(x), g(x)\}$ continuous too? Yes.

Proof for continuity of maximum at a point c

Suppose ε is a prescribed positive number.
By hypothesis, there is a positive δ such that $|x-c|<\delta$ implies $|f(x)-f(c)|<\varepsilon$ and $|g(x)-g(c)|<\varepsilon$, or, equivalently,

$$
-\varepsilon<f(x)-f(c)<\varepsilon \quad \text { and } \quad-\varepsilon<g(x)-g(c)<\varepsilon
$$

or

$$
f(c)-\varepsilon<f(x)<f(c)+\varepsilon \quad \text { and } \quad g(c)-\varepsilon<g(x)<g(c)+\varepsilon
$$

But $f(c)+\varepsilon \leq \max \{f(c), g(c)\}+\varepsilon$ and $g(c)+\varepsilon \leq \max \{f(c), g(c)\}+\varepsilon$.
Combining these inequalities shows that $\max \{f(x), g(x)\} \leq \max \{f(c), g(c)\}+\varepsilon$.
A similar argument shows that $\max \{f(c), g(c)\}-\varepsilon \leq \max \{f(x), g(x)\}$. So we are done.

Nutty ionic exercise

Continuity of f at c means:
$\forall \varepsilon>0 \exists \delta>0$ such that $|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\varepsilon$.
What do each of the following mangled properties mean?

$$
\begin{aligned}
& \text { 1. } \exists \varepsilon>0 \forall \delta>0|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\varepsilon . \\
& \text { 2. } \forall \varepsilon>0 \forall \delta>0 \quad|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\varepsilon . \\
& \text { 3. } \exists \varepsilon>0 \exists \delta>0 \text { such that }|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\varepsilon . \\
& \text { 4. } \forall \varepsilon<0 \exists \delta<0 \text { such that }|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\varepsilon .
\end{aligned}
$$

