Announcements

- No office hour on March 31 (Friday) or April 3 (Monday).
 I will be away from campus.
- Reminder: The second examination takes place in class on April 11 (Tuesday).

Properties of continuous functions on intervals

If I is an interval and $f: I \to \mathbb{R}$ is continuous at every point of I, then

- the image f(l) is an interval (possibly degenerate, possibly unbounded) [intermediate-value theorem];
- if I is a compact interval [a, b], then the image f(I) is a compact interval (possibly a single point) [extreme-value theorem];
- 3. f is injective if and only if f is strictly monotonic.

Comparing notions of function and injective function

 $f: D \to R$ Function means $\forall x \in D \exists ! y \in R$ such that f(x) = y.

Injective means $\forall y \in R$ there is at most one $x \in D$ such that f(x) = y.

Bijective means $\forall y \in R \exists ! x \in D$ such that f(x) = y.

Proof of the intermediate-value theorem

Hypotheses. $f: I \to \mathbb{R}$ is continuous at all points of the interval *I*, and *a* and *b* are two points of *I*, with a < b. **Conclusion.** Every number *y* between f(a) and f(b) is in the image of *f*.

Proof.

Let S denote $\{x \in [a, b] : f(x) \le y\}$. Then S is non-empty (because either $a \in S$ or $b \in S$) and bounded above (by b). By the completeness property of the real numbers, there is a least upper bound, say c. The goal is to show that f(c) = y. WLOG suppose a < c < b. Consider a sequence (x_n) approaching c from the right. By continuity, $f(x_n) \to f(c)$. But $x_n \notin S$, so $f(x_n) > y$. Limits preserve *weak* inequalities, so the limit f(c) is $\ge y$.

Take a new sequence (z_n) such that $z_n \in S$ and $z_n \to c$ (this sequence exists by definition of supremum). Again by continuity, $f(z_n) \to f(c)$. And $f(z_n) \leq y$ because $z_n \in S$. So the limit f(c) is $\leq y$.

Assignment due next class

Exercises 1 and 3 on page 91 in Section 5.4.