Announcement

- No office hour on March 31 (Friday) or April 3 (Monday). I will be away from campus.

Exercise on quantifiers

Do quantifiers commute?

- Is $\forall a \exists d$ the same as $\exists d \forall a$?

For every Aggie there exists a day when the Aggie says Howdy. versus
There exists a day when every Aggie says Howdy. not the same meaning

- Is $\forall a \forall d$ the same as $\forall d \forall a$? the same meaning
- Is $\exists a \exists d$ the same as $\exists d \exists a$?
the same meaning

Continuity versus uniform continuity

Continuity of f at every point of a set.
$\forall c \forall \varepsilon \exists \delta \forall x:|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\varepsilon$.
[δ may depend on both ε and c]
Uniform continuity of f on a set.
$\forall \varepsilon \exists \delta \forall c \forall x:|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\varepsilon$.
[δ depends only on ε]

Example
$f: \mathbb{R} \rightarrow \mathbb{R}$

- $f(x)=x$ is a uniformly continuous function (we can take δ equal to ε)
- $f(x)=x^{2}$ is continuous at each point but not uniformly continuous.

Why is x^{2} not uniformly continuous?

$|f(x)-f(c)|=\left|x^{2}-c^{2}\right|=|x-c||x+c| \approx|x-c| \cdot 2|c|$ when x is close to c.
To make $|f(x)-f(c)|$ less than a prescribed ε, need $|x-c|$ less than approximately $\varepsilon /(2|c|)$. So $\delta \approx \varepsilon /(2|c|)$, which depends on both ε and c.
The function is continuous at each point, but not uniformly continuous on the whole domain.

A magic theorem for compact sets: Theorem 6.6.1

Theorem
If f is continuous at every point of a compact set, then f is automatically uniformly continuous on the set.

Proof using the Heine-Borel covering property.
Fix a target positive ε. For each point c in the set, continuity at c implies the existence of a positive δ_{c} such that if x is in the set and $|x-c|<\delta_{c}$, then $|f(x)-f(c)|<\frac{1}{2} \varepsilon$.
Consider the open intervals ($c-\frac{1}{2} \delta_{c}, c+\frac{1}{2} \delta_{c}$) as c varies over the points of the compact set. By Heine-Borel, there are finitely many points c_{1}, \ldots, c_{n} such that the corresponding open intervals cover the compact set. Let δ be the minimum of $\frac{1}{2} \delta_{c_{1}}, \ldots, \frac{1}{2} \delta_{c_{n}}$.
Claim: If x and y are any two points of the set, and $|x-y|<\delta$, then $|f(x)-f(y)|<\varepsilon$. Hence f is uniformly continuous.

Verification of claim

Suppose $|x-y|<\delta$. By construction, there is some point c_{j} such that $\left|x-c_{j}\right|<\frac{1}{2} \delta_{c_{j}}$. But $|x-y|<\delta \leq \frac{1}{2} \delta_{c_{j}}$, so the triangle inequality implies that $\left|y-c_{j}\right|<\delta_{c_{j}}$.
By the choice of $\delta_{c_{j}}$, both $\left|f(y)-f\left(c_{j}\right)\right|<\frac{1}{2} \varepsilon$ and $\left|f(x)-f\left(c_{j}\right)\right|<\frac{1}{2} \varepsilon$.
The triangle inequality implies that $|f(x)-f(y)|<\varepsilon$, as claimed.

