Reminder

The second examination takes place in class on Tuesday, April 11.
The exam covers an open subset of Chapters 4-7.
Please bring your own paper to work on.

Exercise on continuity

Suppose $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function.

1. How many additional properties of f can you deduce?
2. How many theorems about f can you state?

Math 220 revisited

The set of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is equipped with three binary operations:

- addition $f+g$,
- multiplication $f \times g$,
- composition $f \circ g$.

For each operation, does it have

1. the commutative property?

+ yes, \times yes, o no

2. the associative property?

+ yes, \times yes
$(f \circ g) \circ h(x)=f \circ(g \circ h)(x) ?$
Yes, both sides equal $f(g(h(x)))$.

3. an identity element?
yes for all three

Limits of sequences of continuous functions

Example

Suppose $f_{n}(x)=\frac{x^{2 n}}{1+x^{2 n}}$ for every real number x. Then f_{n} is continuous. Why?
Continuous functions are preserved by addition, multiplication, and division (as long as we don't divide by zero).

Suppose $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for every real number x. Then f has points of discontinuity. Why?

$$
f(x)= \begin{cases}0, & \text { if }|x|<1 \\ 1 / 2, & \text { if } x= \pm 1 \\ 1, & \text { if }|x|>1\end{cases}
$$

The limit of continuous functions is not necessarily continuous.

Pointwise convergence versus uniform convergence

$f_{n} \rightarrow f$ pointwise means
$\forall x \forall \varepsilon \exists N$ such that $n \geq N \Longrightarrow\left|f_{n}(x)-f(x)\right|<\varepsilon$.
The cutoff N depends on both x and ε.
$f_{n} \rightarrow f$ uniformly means
$\forall \varepsilon \exists N$ such that $\forall x \quad n \geq N \Longrightarrow\left|f_{n}(x)-f(x)\right|<\varepsilon$.
The cutoff N depends on ε but not on x.

Example of non-uniform convergence

