Examination 1

Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

1. State one of the following: the Archimedean property of the real numbers; the BolzanoWeierstrass theorem; Cauchy's criterion for convergence.
2. Suppose A and B are bounded, non-empty sets of real numbers, and let C denote the union $A \cup B$. Show that $\sup C$ equals the maximum of the two numbers $\sup A$ and $\sup B$.
3. Give an example of a set having at least one boundary point that is not an accumulation point and also at least one accumulation point that is not a boundary point. Explain why your example has the required properties.
4. Determine the smallest natural number k with the property that

$$
0.999<\frac{n^{2}-1}{n^{2}+1}<1.001 \quad \text { for every natural number } n \text { exceeding } 10^{k}
$$

5. Suppose E is a compact set of real numbers and F is a closed set. Is the intersection $E \cap F$ necessarily compact? Give either a proof or a counterexample, as appropriate.
6. Consider the sequence defined recursively as follows:

$$
x_{1}=1, \quad \text { and } \quad x_{n+1}=\log \left(1+x_{n}\right) \quad \text { when } n \geq 1 .
$$

Here "log" means the natural logarithm function (which is often called "ln" in elementary mathematics). Say as much as you can about the value of $\lim \sup _{n \rightarrow \infty} x_{n}$ for this sequence. Hint: Use the following diagram, which shows that the expression $\log (1+x)$ is an increasing function of x whose graph is concave down. The tangent line at the origin has slope 1 .

