Instructions: Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

- 1. This problem concerns the ordered field \mathbb{Q} , the rational numbers. Your task is to exhibit a concrete example of a bounded subset of \mathbb{Q} that does not have a least upper bound in \mathbb{Q} .
- 2. Suppose that A and B are bounded intervals in \mathbb{R} having non-empty intersection C. Show that $\sup(C)$ equals the minimum of the two numbers $\sup(A)$ and $\sup(B)$.
- 3. For each of the following scenarios, exhibit an example that satisfies the stated property.
 - a) A null sequence of real numbers that is not monotonic.
 - b) A monotonic sequence of real numbers that has no convergent subsequence.
 - c) An unbounded sequence that has a convergent subsequence.
- 4. Prove carefully that when (x_n) is a convergent sequence of real numbers, the sequence $(|x_n|)$ of absolute values is convergent too.
- 5. Suppose $x_n = \frac{n^2 1}{n^2 + 1} + \cos\left(\frac{n\pi}{3}\right)$ for each positive integer *n*. Determine $\limsup_{n \to \infty} x_n$ and $\liminf_{n \to \infty} x_n$.
- 6. State
 - a) the Bolzano–Weierstrass theorem, and
 - b) Cauchy's criterion for convergence of a sequence of real numbers.

Extra Credit Problem. In this problem, the universe is the power set of \mathbb{R} , that is, the set of all subsets of the real numbers. The two operations on sets, \cup and \cap (union and intersection), are somewhat analogous to addition and multiplication. The empty set serves as an identity element for union, since $\emptyset \cup A = A \cup \emptyset = A$ for every set *A*; the whole set \mathbb{R} serves as an identity element for intersection, since $\mathbb{R} \cap A = A \cap \mathbb{R} = A$ for every set *A*. The subset relation \subseteq provides an order on sets: a set *A* is "less than or equal to" a set *B* if *A* is a subset of *B*. The least upper bound of a collection of sets is their union; the greatest lower bound of a collection of sets is their union.

Does the power set of \mathbb{R} , provided with the operations \cup and \cap and the order \subseteq , form a complete ordered field? Explain why or why not.