Examination 2

Instructions: Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

1. For each part, give an example of a subset of \mathbb{R} satisfying the specified property.
a) An unbounded open set whose complement is unbounded too.
b) A non-empty compact set having empty interior.
2. Suppose $f:(0,1) \rightarrow \mathbb{R}$ is defined as follows:

$$
f(x)=\sqrt{x}, \quad 0<x<1
$$

(You know from Section 2.8 that every positive real number has a unique positive square root, so f is well defined.) Prove the unsurprising fact that

$$
\lim _{x \rightarrow 0} f(x)=0
$$

3. Give an example of a function $f:(0,1) \rightarrow \mathbb{R}$ that is continuous at every point of the interval $(0,1)$ but is not uniformly continuous on this interval. Explain why your example works.
4. State one of the following theorems (your choice):
a) the intermediate-value theorem, or
b) the extreme-value theorem, or
c) the Heine-Borel covering theorem.
5. Suppose $f:(0,1) \rightarrow \mathbb{R}$, and let S denote the set $\{x \in(0,1): f$ is continuous at $x\}$. Must S be an open set? Supply a proof or a counterexample, as appropriate.
6. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are two continuous functions. Prove that if $f(r)=g(r)$ for every rational number r, then $f(x)=g(x)$ for every real number x.

Extra Credit Problem. A theorem about inverse functions says that if I and J are intervals in \mathbb{R}, and a function f is a continuous bijection from I onto J, then the inverse function f^{-1} is automatically continuous on J.

Your task is to construct an example of two subsets A and B of \mathbb{R} and a bijective continuous function f from A onto B such that f^{-1} is discontinuous at some point of B. (In view of the theorem, your sets A and B cannot both be intervals.)

