**Instructions.** Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

- 1. State three definitions or theorems that use the phrase "for every positive  $\varepsilon$ ."
- 2. For each part, give an example of a non-empty subset S of  $\mathbb{R}$  that satisfies the property.
  - a) The set *S* has infinitely many limit points and also has empty interior.
  - b) The set S is bounded, and sup{ x<sup>2</sup> : x ∈ S } ≠ (sup S)<sup>2</sup>.
    (As usual, the notation "sup" means the supremum, that is, the least upper bound.)
- 3. Consider the sequence defined recursively as follows:

 $x_1 = \sin(1)$ , and  $x_{n+1} = \sin(x_n)$  when  $n \ge 1$ .

Does this sequence of real numbers converge? Explain why or why not. (You may assume the standard properties of the sine function shown on the second page.)

- 4. Here are five concepts from this course commencing with the consonant c:
  - a) closure of a set
  - b) compact set
  - c) completeness axiom
  - d) continuous function
  - e) covering of a set

Explain the meaning of three of these concepts.

5. When *E* is a non-empty subset of  $\mathbb{R}$ , the distance-to-*E* function  $d_E$  is defined as follows:

 $d_E(x) = \inf\{ |x - y| : y \in E \}$  for each real number x.

Prove that if the set E is closed, then "inf" can be replaced by "min" in this definition: in other words, for each x, the infimum (greatest lower bound) is attained for some y in E.

- 6. When  $f : [0, 2] \to \mathbb{R}$  is a monotonic, differentiable function for which f(0) = 0, f(1) = 1, and f(2) = 2, what (if anything) can be deduced about
  - a) the limit  $\lim_{x \to 1} f(x)$ ?
  - b) the derivative f'(1)?
  - c) the integral  $\int_0^2 f(x) dx$ ?

Explain your reasoning.

**Extra Credit Problem.** Suppose  $f: (-1, 1) \to \mathbb{R}$  is defined as follows:  $f(x) = \frac{x^{409} + 1}{x^{501} + 1}$ . Say as much as you can about the image, the set  $\{f(x): -1 < x < 1\}$ . **Background for Problem 3.** You may assume as standard knowledge both the graph below and the fact that  $\frac{d}{dx}\sin(x) = \cos(x) = \sin(\frac{1}{2}\pi - x)$ .

