Questions

Induction: Want to prove some statement $P(n)$ for all natural numbers n.

Strategy:

1. basis step: prove $P(1)$
2. induction step: prove the implication $\forall n$
$(P(n) \Longrightarrow P(n+1))$
Equivalent statement is the well-ordering property of \mathbb{N} : namely, every nonempty set of natural numbers has a least element.

A proof that $\sqrt{2}$ is irrational via the well-ordering property, after Richard Dedekind (1831-1916)

Proof by contradiction.
If $\sqrt{2}$ is a rational number, then there is a natural number n such that $n \sqrt{2}$ is an integer. By the well-ordering property of \mathbb{N}, there is a least such n, say k. Let j denote the difference $k \sqrt{2}-k$. Then (a) j is an integer (the difference of two integers)
(b) $0<j<k$ (by a calculation)
(c) $j \sqrt{2}$ is an integer (namely, $2 k-k \sqrt{2}$)

Therefore k is not least after all. Contradiction. The contradiction means that $\sqrt{2}$ cannot be a rational number.

Assignment due next class

- Write solutions to Exercises 0.3.19 and 0.3.20.
- Read section 1.1 in the textbook.

