Questions

Induction: Want to prove some statement P(n) for all natural numbers n.

Strategy:

- 1. basis step: prove P(1)
- 2. induction step: prove the implication $\forall n$ $(P(n) \implies P(n+1))$

Equivalent statement is the well-ordering property of $\mathbb{N}:$ namely, every nonempty set of natural numbers has a least element.

A proof that $\sqrt{2}$ is irrational via the well-ordering property, after Richard Dedekind (1831–1916)

Proof by contradiction.

If $\sqrt{2}$ is a rational number, then there is a natural number *n* such that $n\sqrt{2}$ is an integer. By the well-ordering property of \mathbb{N} , there is a least such *n*, say *k*. Let *j* denote the difference $k\sqrt{2} - k$. Then (a) *j* is an integer (the difference of two integers) (b) 0 < j < k (by a calculation) (c) $j\sqrt{2}$ is an integer (namely, $2k - k\sqrt{2}$)

Therefore k is not least after all. Contradiction. The contradiction means that $\sqrt{2}$ cannot be a rational number.

Assignment due next class

- ▶ Write solutions to Exercises 0.3.19 and 0.3.20.
- Read section 1.1 in the textbook.